Mixed-Type Imputation for Missing Data Credal Classification via Quality Matrices

被引:0
|
作者
Zhang, Zuowei [1 ,2 ]
Liu, Zhunga [1 ]
Tian, Hongpeng [3 ]
Martin, Arnaud [2 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian 710072, Peoples R China
[2] Univ Rennes, CNRS, IRISA, DRUID, F-22300 Lannion, France
[3] Zhengzhou Univ, Sch Elect Engn, Luoyang 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
Estimation; Reviews; Reliability; Linear approximation; Evidence theory; Cybernetics; Automation; Belief functions; classification; classifier fusion; missing data; quality matrix; PATTERN-CLASSIFICATION; MACHINE; VALUES;
D O I
10.1109/TSMC.2024.3389464
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Classification of missing data based on estimation is still challenging since existing methods relying on one imputation strategy fail to consider the diversity of different attribute distributions. In this case, there are inevitably some "bad" estimations at the attribute level, reducing the performance of classification. This article proposes a mixed-type imputation method (MTI) to classify missing data under the theory of belief functions (TBF) via two quality matrices to address this problem. The proposed MTI method has the advantages of making estimations as close to the truth as possible at the attribute level while reducing the negative impact of possible bad estimations on the classification. Specifically, the first matrix used to impute missing values can characterize the different supports of multiple imputation methods for estimating various attributes. The other matrix used to perform the classification task can extract the reliabilities of estimations on the different classes. The validity has been demonstrated in the final decision support based on the TBF, famous for characterizing uncertainty and imprecision, for example, caused by missing values.
引用
收藏
页码:4772 / 4785
页数:14
相关论文
共 50 条
  • [1] Imputation Strategies for Clustering Mixed-Type Data with Missing Values
    Rabea Aschenbruck
    Gero Szepannek
    Adalbert F. X. Wilhelm
    [J]. Journal of Classification, 2023, 40 : 2 - 24
  • [2] Imputation Strategies for Clustering Mixed-Type Data with Missing Values
    Aschenbruck, Rabea
    Szepannek, Gero
    Wilhelm, Adalbert F. X.
    [J]. JOURNAL OF CLASSIFICATION, 2023, 40 (01) : 2 - 24
  • [3] MissForest-non-parametric missing value imputation for mixed-type data
    Stekhoven, Daniel J.
    Buehlmann, Peter
    [J]. BIOINFORMATICS, 2012, 28 (01) : 112 - 118
  • [4] Online missing value imputation for high-dimensional mixed-type data via generalized factor models
    Liu, Wei
    Luo, Lan
    Zhou, Ling
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 187
  • [5] Missing-Values Adjustment for Mixed-Type Data
    Tarsitano, Agostino
    Falcone, Marianna
    [J]. JOURNAL OF PROBABILITY AND STATISTICS, 2011, 2011
  • [6] Missing Value Imputation for Mixed Data via Gaussian Copula
    Zhao, Yuxuan
    Udell, Madeleine
    [J]. KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 636 - 646
  • [7] Learning a Credal Classifier With Optimized and Adaptive Multiestimation for Missing Data Imputation
    Zhang, Zuo-Wei
    Tian, Hong-Peng
    Yan, Ling-Zhi
    Martin, Arnaud
    Zhou, Kuang
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (07): : 4092 - 4104
  • [8] An adaptive Laplacian weight random forest imputation for imbalance and mixed-type data
    Ren, Lijuan
    Seklouli, Aicha Sekhari
    Zhang, Haiqing
    Wang, Tao
    Bouras, Abdelaziz
    [J]. INFORMATION SYSTEMS, 2023, 111
  • [9] Review and evaluation of imputation methods for multivariate longitudinal data with mixed-type incomplete variables
    Cao, Yi
    Allore, Heather
    Vander Wyk, Brent
    Gutman, Roee
    [J]. STATISTICS IN MEDICINE, 2022, 41 (30) : 5844 - 5876
  • [10] Data variability in the imputation quality of missing data
    Stochero, Elisandra Lucia Moro
    Lucio, Alessandro Dal'Col
    Jacobi, Luciane Flores
    [J]. ACTA SCIENTIARUM-AGRONOMY, 2024, 46