Effective Electricity Demand Prediction via Deep Learning

被引:0
|
作者
Ko, Daegun [1 ]
Yoon, Youngmin [2 ]
Kim, Jinoh [3 ,4 ]
Choi, Haelyong [1 ]
机构
[1] Smart-City Service Group, Hyundai-Autoever, 510 Teheran-ro, Gangnam-gu, Korea, Republic of
[2] Smart-Factory of Next-Generation Service Group, Hyundai-Autoever, 510 Teheran-ro, Gangnam-gu, Korea, Republic of
[3] Advanced Systems Convergence Lab, Department of Systems Engineering, Graduate School, Ajou University, 206 World cup-ro Yeongtong-gu, Gyeonggi-do, Suwon-si, Korea, Republic of
[4] CEO of Core DIT Co.,Ltd, 21, Bangbaecheon-ro 2-gil, Seocho-gu, Seoul, Korea, Republic of
关键词
D O I
10.5573/IEIESPC.2021.10.6.483
中图分类号
学科分类号
摘要
引用
收藏
页码:483 / 489
相关论文
共 50 条
  • [1] Deep learning hyperparameter optimization: Application to electricity and heat demand prediction for buildings
    Morteza, Azita
    Yahyaeian, Amir Abbas
    Mirzaeibonehkhater, Marzieh
    Sadeghi, Sina
    Mohaimeni, Ali
    Taheri, Saman
    [J]. ENERGY AND BUILDINGS, 2023, 289
  • [2] Deep Learning for Forecasting Electricity Demand in Taiwan
    Yang, Cheng-Hong
    Chen, Bo-Hong
    Wu, Chih-Hsien
    Chen, Kuo-Chang
    Chuang, Li-Yeh
    [J]. MATHEMATICS, 2022, 10 (14)
  • [3] Deep learning framework to forecast electricity demand
    Bedi, Jatin
    Toshniwal, Durga
    [J]. APPLIED ENERGY, 2019, 238 : 1312 - 1326
  • [4] Statistical and Machine Learning Methods for Electricity Demand Prediction
    Kotillova, Alexandra
    Koprinska, Irena
    Rana, Mashud
    [J]. NEURAL INFORMATION PROCESSING, ICONIP 2012, PT II, 2012, 7664 : 535 - 542
  • [5] Towards efficient and effective renewable energy prediction via deep learning
    Khan, Zulfiqar Ahmad
    Hussain, Tanveer
    Ul Haq, Ijaz
    Ullah, Fath U. Min
    Baik, Sung Wook
    [J]. ENERGY REPORTS, 2022, 8 : 10230 - 10243
  • [6] Towards efficient and effective renewable energy prediction via deep learning
    Khan, Zulfiqar Ahmad
    Hussain, Tanveer
    Ul Haq, Ijaz
    Ullah, Fath U. Min
    Baik, Sung Wook
    [J]. ENERGY REPORTS, 2022, 8 : 10230 - 10243
  • [7] Efficient daily electricity demand prediction with hybrid deep-learning multi-algorithm approach
    Ghimire, Sujan
    Deo, Ravinesh C.
    Casillas-Perez, David
    Salcedo-Sanz, Sancho
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2023, 297
  • [8] A deep reinforced learning spatiotemporal energy demand estimation system using deep learning and electricity demand monitoring data
    Maki, Seiya
    Fujii, Minoru
    Fujita, Tsuyoshi
    Shiraishi, Yasushi
    Ashina, Shuichi
    Gomi, Kei
    Sun, Lu
    Nugroho, Sudarmanto Budi
    Nakano, Ryoko
    Osawa, Takahiro
    Immanuel, Gito
    Boer, Rizaldi
    [J]. APPLIED ENERGY, 2022, 324
  • [9] Prediction Markets for Electricity Demand
    de Castro, Luciano I.
    Cramton, Peter
    [J]. 2012 50TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2012, : 1097 - 1104
  • [10] Empirical Mode Decomposition Based Deep Learning for Electricity Demand Forecasting
    Bedi, Jatin
    Toshniwal, Durga
    [J]. IEEE ACCESS, 2018, 6 : 49144 - 49156