Machine learning-assisted design of porous carbons for removing paracetamol from aqueous solutions

被引:0
|
作者
Kowalczyk, Piotr [1 ]
Terzyk, Artur P. [2 ]
Erwardt, Paulina [2 ]
Hough, Michael [1 ]
Deditius, Artur P. [1 ,3 ]
Gauden, Piotr A. [4 ]
Neimark, Alexander V. [5 ]
Kaneko, Katsumi [6 ]
机构
[1] College of Science, Health, Engineering and Education, Murdoch University, WA,6150, Australia
[2] Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarin St. 7, Toruń,87-100, Poland
[3] School of Earth Sciences, The University of Western Australia, Perth,WA,6009, Australia
[4] Faculty of Chemistry, Carbon Materials Application in Electrochemistry and Environmental Protection Research Group, Nicolaus Copernicus University in Toruń, Gagarin St. 7, Toruń,87-100, Poland
[5] Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway,NJ,08854-8058, United States
[6] Center for Energy and Environmental Science, Shinshu University, Nagano,380-8553, Japan
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:371 / 381
相关论文
共 50 条
  • [1] Machine learning-assisted design of porous carbons for removing paracetamol from aqueous solutions
    Kowalczyk, Piotr
    Terzyk, Artur P.
    Erwardt, Paulina
    Hough, Michael
    Deditius, Artur P.
    Gauden, Piotr A.
    Neimark, Alexander, V
    Kaneko, Katsumi
    [J]. CARBON, 2022, 198 : 371 - 381
  • [2] Machine Learning-Assisted Design of Material Properties
    Kadulkar, Sanket
    Sherman, Zachary M.
    Ganesan, Venkat
    Truskett, Thomas M.
    [J]. ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, 2022, 13 : 235 - 254
  • [3] Machine Learning-Assisted Modeling in Antenna Array Design
    Wu, Qi
    Chen, Weiqi
    Li, Yuefeng
    Wang, Haiming
    Yin, Jiexi
    Yin, Weishuang
    [J]. 2024 IEEE INTERNATIONAL WORKSHOP ON ANTENNA TECHNOLOGY, IWAT, 2024, : 92 - 93
  • [4] Machine Learning-Assisted Design of Advanced Polymeric Materials
    Gao, Liang
    Lin, Jiaping
    Wang, Liquan
    Du, Lei
    [J]. ACCOUNTS OF MATERIALS RESEARCH, 2024, 5 (05): : 571 - 584
  • [5] Machine Learning-Assisted Survey on Charge Storage of MXenes in Aqueous Electrolytes
    Kawai, Kosuke
    Ando, Yasunobu
    Okubo, Masashi
    [J]. SMALL METHODS, 2024,
  • [6] Recent progress in the machine learning-assisted rational design of alloys
    Huadong Fu
    Hongtao Zhang
    Changsheng Wang
    Wei Yong
    Jianxin Xie
    [J]. International Journal of Minerals,Metallurgy and Materials, 2022, 29 (04) : 635 - 644
  • [7] Machine Learning-Assisted Codebook Design for MMSE Channel Estimation
    Tian, Xiaowen
    Hu, Yeqing
    Li, Yang
    Wang, Tiexing
    Zhang, Jianzhong
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 283 - 288
  • [8] Recent progress in the machine learning-assisted rational design of alloys
    Fu, Huadong
    Zhang, Hongtao
    Wang, Changsheng
    Yong, Wei
    Xie, Jianxin
    [J]. INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2022, 29 (04) : 635 - 644
  • [9] Machine learning-assisted chemical design of highly efficient deicers
    Ito, Kai
    Fukatsu, Arisa
    Okada, Kenji
    Takahashi, Masahide
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [10] Recent progress in the machine learning-assisted rational design of alloys
    Huadong Fu
    Hongtao Zhang
    Changsheng Wang
    Wei Yong
    Jianxin Xie
    [J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29 : 635 - 644