Implicit relational attention network for few-shot knowledge graph completion

被引:0
|
作者
Yang, Xu-Hua [1 ]
Li, Qi-Yao [1 ]
Wei, Dong [1 ]
Long, Hai-Xia [1 ]
机构
[1] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou 310023, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Implicit relationship; Few-shot learning; Attention network; Knowledge graph completion;
D O I
10.1007/s10489-024-05511-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge Graphs can not contain all the knowledge during the construction process, so needs to be completed to enhance its integrity. In real knowledge graphs, different relationships often show apparent long-tail distributions, i.e., many relationships have only a small number of entity pairs. Therefore, it is an urgent need to study few-shot knowledge graph completion. Existing methods generally complete the knowledge graph by learning representations of entities and relationships, but ignore the impact of the similarity of neighbor relations between triple entity pairs on completion. In this paper, we propose an implicit relational attention network to address this limitation. First, we propose a heterogeneous entity and relational encoder to mine one-hop neighbor information and enhance entity and relational representations through attention mechanism and convolution. Next, we propose an implicit relationship aware encoder to mine the neighbor relationship similarity information of triple entity pairs and obtain the triple dynamic relationship representation. Then we propose an adaptive relationship fusion network, which fuses the triple dynamic relationship representation and the original information of the neighbor relationship similarity of entity pairs, enhances the relationship representation of the query set to the reference set, so as to improve the accuracy of the few-shot knowledge graph completion. On two benchmark datasets, by comparing with well-known completion methods, the experimental results show that the proposed method achieves very competitive performance.
引用
收藏
页码:6433 / 6443
页数:11
相关论文
共 50 条
  • [1] Few-Shot Knowledge Graph Completion
    Zhang, Chuxu
    Yao, Huaxiu
    Huang, Chao
    Jiang, Meng
    Li, Zhenhui
    Chawla, Nitesh, V
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 3041 - 3048
  • [2] Relational Learning with Hierarchical Attention Encoder and Recoding Validator for Few-Shot Knowledge Graph Completion
    Yuan, Xu
    Xu, Chengchuan
    Li, Peng
    Chen, Zhikui
    37TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2022, : 786 - 794
  • [3] Adaptive Attentional Network for Few-Shot Knowledge Graph Completion
    Sheng, Jiawei
    Guo, Shu
    Chen, Zhenyu
    Yue, Juwei
    Wang, Lihong
    Liu, Tingwen
    Xu, Hongbo
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 1681 - 1691
  • [4] Twin Graph Attention Network with Evolution Pattern Learner for Few-Shot Temporal Knowledge Graph Completion
    Liang, Yi
    Zhao, Shuai
    Cheng, Bo
    Yang, Hao
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2023, 2023, 14117 : 234 - 246
  • [5] A survey of few-shot knowledge graph completion
    Zhang, Chaoqin
    Li, Ting
    Yin, Yifeng
    Ma, Jiangtao
    Gan, Yong
    Zhang, Yanhua
    Qiao, Yaqiong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (04) : 6127 - 6143
  • [6] Fine-grained Relational Learning for Few-shot Knowledge Graph Completion
    Yuan, Xu
    Lei, Qihang
    Yu, Shuo
    Xu, Chengchuan
    Chen, Zhikui
    APPLIED COMPUTING REVIEW, 2022, 22 (03): : 25 - 38
  • [7] Simple and effective meta relational learning for few-shot knowledge graph completion
    Chen, Shujian
    Yang, Bin
    Zhao, Chenxing
    OPTIMIZATION AND ENGINEERING, 2024,
  • [8] Semantic Interaction Matching Network for Few-Shot Knowledge Graph Completion
    Luo, Pengfei
    Zhu, Xi
    Xu, Tong
    Zheng, Yi
    Chen, Enhong
    ACM TRANSACTIONS ON THE WEB, 2024, 18 (02)
  • [9] Adaptive Prototype Interaction Network for Few-Shot Knowledge Graph Completion
    Li, Yuling
    Yu, Kui
    Zhang, Yuhong
    Liang, Jiye
    Wu, Xindong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (11) : 1 - 14
  • [10] Few-Shot Knowledge Graph Completion Combined with Type-Aware Attention
    Pu X.
    Wang H.
    Xian Y.
    Data Analysis and Knowledge Discovery, 2023, 7 (09) : 51 - 63