Advancing Sustainable COVID-19 Diagnosis: Integrating Artificial Intelligence with Bioinformatics in Chest X-ray Analysis

被引:0
|
作者
Louati, Hassen [1 ]
Louati, Ali [2 ]
Lahyani, Rahma [3 ]
Kariri, Elham [2 ]
Albanyan, Abdullah [4 ]
机构
[1] Kingdom Univ, Coll Informat Technol, Riffa 40434, Bahrain
[2] Prince Sattam bin Abdulaziz Univ, Coll Comp Engn & Sci, Dept Informat Syst, Al Kharj 11942, Saudi Arabia
[3] Alfaisal Univ, Coll Business, Operat & Project Management Dept, Riyadh 11533, Saudi Arabia
[4] Prince Sattam bin Abdulaziz Univ, Coll Comp Engn & Sci, Dept Software Engn, Al Kharj 11942, Saudi Arabia
关键词
optimization in AI diagnostics; genetic algorithm; transfer learning; sustainable healthcare solutions; ALGORITHM;
D O I
10.3390/info15040189
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Responding to the critical health crisis triggered by respiratory illnesses, notably COVID-19, this study introduces an innovative and resource-conscious methodology for analyzing chest X-ray images. We unveil a cutting-edge technique that marries neural architecture search (NAS) with genetic algorithms (GA), aiming to refine the architecture of convolutional neural networks (CNNs) in a way that diminishes the usual demand for computational power. Leveraging transfer learning (TL), our approach efficiently navigates the hurdles posed by scarce data, optimizing both time and hardware utilization-a cornerstone for sustainable AI initiatives. The investigation leverages a curated dataset of 1184 COVID-positive and 1319 COVID-negative chest X-ray images, serving as the basis for model training, evaluation, and validation. Our methodology not only boosts the precision in diagnosing COVID-19 but also establishes a pioneering standard in the realm of eco-friendly and effective healthcare technologies. Through comprehensive comparative analyses against leading-edge models, our optimized solutions exhibit significant performance enhancements alongside a minimized ecological impact. This contribution marks a significant stride towards eco-sustainable medical imaging, presenting a paradigm that prioritizes environmental stewardship while adeptly addressing modern healthcare exigencies. We compare our approach to state-of-the-art architectures through multiple comparative studies.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Artificial Intelligence Applied to Chest X-ray for Differential Diagnosis of COVID-19 Pneumonia
    Salvatore, Christian
    Interlenghi, Matteo
    Monti, Caterina B.
    Ippolito, Davide
    Capra, Davide
    Cozzi, Andrea
    Schiaffino, Simone
    Polidori, Annalisa
    Gandola, Davide
    Ali, Marco
    Castiglioni, Isabella
    Messa, Cristina
    Sardanelli, Francesco
    [J]. DIAGNOSTICS, 2021, 11 (03)
  • [2] A Novel Method for COVID-19 Diagnosis Using Artificial Intelligence in Chest X-ray Images
    Almalki, Yassir Edrees
    Qayyum, Abdul
    Irfan, Muhammad
    Haider, Noman
    Glowacz, Adam
    Alshehri, Fahad Mohammed
    Alduraibi, Sharifa K.
    Alshamrani, Khalaf
    Basha, Mohammad Abd Alkhalik
    Alduraibi, Alaa
    Saeed, M. K.
    Rahman, Saifur
    [J]. HEALTHCARE, 2021, 9 (05)
  • [3] A Literature Review on the Use of Artificial Intelligence for the Diagnosis of COVID-19 on CT and Chest X-ray
    Mulrenan, Ciara
    Rhode, Kawal
    Fischer, Barbara Malene
    [J]. DIAGNOSTICS, 2022, 12 (04)
  • [4] Artificial Intelligence–assisted chest X-ray assessment scheme for COVID-19
    Krithika Rangarajan
    Sumanyu Muku
    Amit Kumar Garg
    Pavan Gabra
    Sujay Halkur Shankar
    Neeraj Nischal
    Kapil Dev Soni
    Ashu Seith Bhalla
    Anant Mohan
    Pawan Tiwari
    Sushma Bhatnagar
    Raghav Bansal
    Atin Kumar
    Shivanand Gamanagati
    Richa Aggarwal
    Upendra Baitha
    Ashutosh Biswas
    Arvind Kumar
    Pankaj Jorwal
    A. Shalimar
    Naveet Shariff
    Rajeshwari Wig
    Anjan Subramanium
    Rajesh Trikha
    Randeep Malhotra
    Vinay Guleria
    Subhashis Namboodiri
    Chetan Banerjee
    [J]. European Radiology, 2021, 31 : 6039 - 6048
  • [5] Artificial Intelligence-Assisted Chest X-ray for the Diagnosis of COVID-19: A Systematic Review and Meta-Analysis
    Tzeng, I-Shiang
    Hsieh, Po-Chun
    Su, Wen-Lin
    Hsieh, Tsung-Han
    Chang, Sheng-Chang
    [J]. DIAGNOSTICS, 2023, 13 (04)
  • [6] Artificial Intelligence-assisted chest X-ray assessment scheme for COVID-19
    Rangarajan, Krithika
    Muku, Sumanyu
    Garg, Amit Kumar
    Gabra, Pavan
    Shankar, Sujay Halkur
    Nischal, Neeraj
    Soni, Kapil Dev
    Bhalla, Ashu Seith
    Mohan, Anant
    Tiwari, Pawan
    Bhatnagar, Sushma
    Bansal, Raghav
    Kumar, Atin
    Gamanagati, Shivanand
    Aggarwal, Richa
    Baitha, Upendra
    Biswas, Ashutosh
    Kumar, Arvind
    Jorwal, Pankaj
    Shalimar
    Shariff, A.
    Wig, Naveet
    Subramanium, Rajeshwari
    Trikha, Anjan
    Malhotra, Rajesh
    Guleria, Randeep
    Namboodiri, Vinay
    Banerjee, Subhashis
    Arora, Chetan
    [J]. EUROPEAN RADIOLOGY, 2021, 31 (08) : 6039 - 6048
  • [7] Artificial Intelligence Based COVID-19 Detection and Classification Model on Chest X-ray Images
    Althaqafi, Turki
    AL-Ghamdi, Abdullah S. AL-Malaise
    Ragab, Mahmoud
    [J]. HEALTHCARE, 2023, 11 (09)
  • [8] Current limitations to identify COVID-19 using artificial intelligence with chest X-ray imaging
    Daniel Lopez-Cabrera, Jose
    Orozco-Morales, Ruben
    Armando Portal-Diaz, Jorge
    Lovelle-Enriquez, Orlando
    Perez-Diaz, Marlen
    [J]. HEALTH AND TECHNOLOGY, 2021, 11 (02) : 411 - 424
  • [9] Current limitations to identify COVID-19 using artificial intelligence with chest X-ray imaging
    José Daniel López-Cabrera
    Rubén Orozco-Morales
    Jorge Armando Portal-Diaz
    Orlando Lovelle-Enríquez
    Marlén Pérez-Díaz
    [J]. Health and Technology, 2021, 11 : 411 - 424
  • [10] Chest X-Ray Images to Differentiate COVID-19 from Pneumonia with Artificial Intelligence Techniques
    Islam, Rumana
    Tarique, Mohammed
    [J]. INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2022, 2022