Robust Moving-Horizon Estimation for Quasi-LPV Discrete-Time Systems

被引:0
|
作者
Arezki, H. [1 ,2 ]
Alessandri, A. [1 ]
Zemouche, A. [2 ]
机构
[1] Univ Genoa, DIME, Via Opera Pia 15, I-16145 Genoa, Italy
[2] Univ prime Lorraine, CRAN CNRS UMR 7039, F-54400 Cosnes Et Romain, France
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
关键词
Quasi-LPV systems; moving horizon estimator; stability; incremental input output-to-state stability; TO-STATE STABILITY; DETECTABILITY;
D O I
10.1016/j.ifacol.2023.10.384
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with moving horizon estimation for a class of quasi-LPV systems. Under both observability condition and incremental exponential input output-to-state stability (i-EIOSS) assumption, novel stability conditions of the moving horizon estimator (MHE) are proposed. Such conditions guarantee exponential robust stability of the MHE based on a particular prediction step that is independent of the dynamic of the system. An application to vehicle motion estimation, using the kinematic model, is provided to show the validity and effectiveness of the proposed method, and to support the theoretical results. Copyright (C) 2023 The Authors.
引用
收藏
页码:6771 / 6776
页数:6
相关论文
共 50 条
  • [1] Optimistic vs Pessimistic Moving-Horizon Estimation for Quasi-LPV Discrete-Time Systems
    Alessandri, A.
    Zasadzinski, M.
    Zemouche, A.
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 5004 - 5009
  • [2] Robust Convergence Analysis of Moving-Horizon Estimator for LPV Discrete-Time Systems
    Arezki, H.
    Alessandri, A.
    Zemouche, A.
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 11578 - 11583
  • [3] Moving-horizon Estimation for Discrete-time Linear Systems With Measurements Subject to Outliers
    Alessandri, Angelo
    Awawdeh, Moath
    [J]. 2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 2591 - 2596
  • [4] MIN-MAX MOVING-HORIZON ESTIMATION FOR UNCERTAIN DISCRETE-TIME LINEAR SYSTEMS
    Alessandri, A.
    Baglietto, M.
    Battistelli, G.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (03) : 1439 - 1465
  • [5] Moving-horizon estimation with guaranteed robustness for discrete-time linear systems and measurements subject to outliers
    Alessandri, Angelo
    Awawdeh, Moath
    [J]. AUTOMATICA, 2016, 67 : 85 - 93
  • [6] Moving-Horizon Estimation for Discrete-time Linear and Nonlinear Systems Using the Gradient and Newton Methods
    Alessandri, Angelo
    Gaggero, Mauro
    [J]. 2016 IEEE 55TH CONFERENCE ON DECISION AND CONTROL (CDC), 2016, : 2906 - 2911
  • [7] Moving-horizon state estimation for nonlinear discrete-time systems: New stability results and approximation schemes
    Alessandri, Angelo
    Baglietto, Marco
    Battistelli, Giorgio
    [J]. AUTOMATICA, 2008, 44 (07) : 1753 - 1765
  • [8] Robust Data-Driven Moving Horizon Estimation for Linear Discrete-Time Systems
    Wolff, Tobias M.
    Lopez, Victor G.
    Mueller, Matthias A.
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (08) : 5598 - 5604
  • [9] Observer design for a class of discrete-time quasi-LPV Systems with unknown parameters: Algebraic approach
    Ichalal, Dalil
    Mammar, Said
    Dabladji, Mohammed El-Habib
    Ragot, Jose
    [J]. 2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 915 - 920
  • [10] Robust adaptive control of quasi-LPV systems
    Wei, XK
    Del Re, L
    Tan, JD
    [J]. 2005 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS, VOLS 1 AND 2, 2005, : 1617 - 1622