Dark fluxes from electromagnetic cascades

被引:3
|
作者
Blinov, Nikita [1 ,2 ]
Fox, Patrick J. [3 ]
Kelly, Kevin J. [4 ,5 ]
Machado, Pedro A. N. [3 ]
Plestid, Ryan [6 ]
机构
[1] York Univ, Dept Phys & Astron, Toronto, ON M3J 1P3, Canada
[2] Univ Victoria, Dept Phys & Astron, Victoria, BC V8P 5C2, Canada
[3] Fermilab Natl Accelerator Lab, Particle Theory Dept, Batavia, IL 60510 USA
[4] CERN, Theoret Phys Dept, 1 Esplanade Particules, Geneva, Switzerland
[5] Texas A&M Univ, Mitchell Inst Fundamental Phys & Astron, Dept Phys & Astron, College Stn, TX 77843 USA
[6] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2024年 / 07期
基金
加拿大自然科学与工程研究理事会;
关键词
Dark Matter at Colliders; New Light Particles; MULTIPLE COULOMB SCATTERING; HIGH-ENERGY; PAIR PRODUCTION; BREMSSTRAHLUNG; SEARCH; PARTICLES; ANNIHILATION; LEPTON;
D O I
10.1007/JHEP07(2024)022
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study dark sector production in electromagnetic (EM) cascades. This problem requires accurate simulations of Standard Model (SM) and dark sector processes, both of which impact angular and energy distributions of emitted particles that ultimately determine flux predictions in a downstream detector. We describe the minimal set of QED processes which must be included to faithfully reproduce a SM cascade, and identify a universal algorithm to generate a dark sector flux given a Monte-Carlo simulation of a SM shower. We provide a new tool, , which simulates EM cascades with associated dark vector production, and compare it against existing literature and "off the shelf" tools. The signal predictions at downstream detectors can strongly depend on the nontrivial interplay (and modelling) of SM and dark sector processes, in particular multiple Coulomb scattering and positron annihilation. We comment on potential impacts of these effects for realistic experimental setups.
引用
收藏
页数:42
相关论文
共 50 条
  • [1] Atmospheric muons from electromagnetic cascades
    Meighen-Berger, Stephan
    Li, Mingyang
    36TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2019, 2021,
  • [2] Signal characteristics from electromagnetic cascades in ice
    Razzaque, S
    Seunarine, S
    Besson, DZ
    McKay, DW
    RADIO DETECTION OF HIGH ENERGY PARTICLES, 2001, 579 : 139 - 146
  • [3] Muon fluxes from dark matter annihilation
    Erkoca, Arif Emre
    Reno, Mary Hall
    Sarcevic, Ina
    PHYSICAL REVIEW D, 2009, 80 (04):
  • [4] ELECTROMAGNETIC CASCADES IN PULSARS
    DAUGHERTY, JK
    HARDING, AK
    ASTROPHYSICAL JOURNAL, 1982, 252 (01): : 337 - 347
  • [5] From electromagnetic neutrinos to new electromagnetic radiation mechanism in neutrino fluxes
    Balantsev, Ilya
    Studenikin, Alexander
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2015, 30 (17):
  • [6] From Electromagnetic Neutrinos to New Electromagnetic Radiation Mechanism in Neutrino Fluxes
    Balantsev, Ilya
    Studenikin, Alexander
    MASSIVE NEUTRINOS: FLAVOR MIXING OF LEPTONS AND NEUTRINO OSCILLATIONS, 2016, 25 : 197 - 206
  • [7] ELECTROMAGNETIC CASCADES AND POLARISATION OF MEDIUM
    SRINIVASAN, SK
    NUCLEAR PHYSICS, 1963, 41 (02): : 202 - &
  • [8] Hybrid simulations of electromagnetic cascades
    Stanev, Todor
    Vankov, H. P.
    ASTROPARTICLE PHYSICS, 1994, 2 (01) : 35 - 42
  • [9] ELECTROMAGNETIC CASCADES IN MAGNETIZED MEDIA
    Pellizza, Leonardo J.
    Orellana, Mariana
    Romero, Gustavo E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2010, 19 (06): : 671 - 676
  • [10] FLUCTUATIONS OF ELECTROMAGNETIC CASCADES IN LEAD
    AZIMOV, SA
    KOCHETKOV, GA
    KRATENKO, YP
    CHARYSHNIKOV, SA
    IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA, 1980, 44 (03): : 579 - 582