Prediction of DNA methylation-based tumor types from histopathology in central nervous system tumors with deep learning

被引:10
|
作者
Hoang, Danh-Tai [1 ]
Shulman, Eldad D. [2 ]
Turakulov, Rust [3 ]
Abdullaev, Zied [3 ]
Singh, Omkar [3 ]
Campagnolo, Emma M. [2 ]
Lalchungnunga, H. [3 ]
Stone, Eric A. [1 ]
Nasrallah, MacLean P. [4 ]
Ruppin, Eytan [2 ]
Aldape, Kenneth [3 ]
机构
[1] Australian Natl Univ, Biol Data Sci Inst, Coll Sci, Canberra, ACT, Australia
[2] NCI, Canc Data Sci Lab, Ctr Canc Res, Bethesda, MD 20892 USA
[3] NCI, Lab Pathol, Ctr Canc Res, Bethesda, MD 20892 USA
[4] Univ Penn, Perelman Sch Med, Dept Pathol & Lab Med, Div Neuropathol, Philadelphia, PA USA
基金
澳大利亚研究理事会; 美国国家卫生研究院;
关键词
CLASSIFICATION; CANCER;
D O I
10.1038/s41591-024-02995-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Precision in the diagnosis of diverse central nervous system (CNS) tumor types is crucial for optimal treatment. DNA methylation profiles, which capture the methylation status of thousands of individual CpG sites, are state-of-the-art data-driven means to enhance diagnostic accuracy but are also time consuming and not widely available. Here, to address these limitations, we developed Deep lEarning from histoPathoLOgy and methYlation (DEPLOY), a deep learning model that classifies CNS tumors to ten major categories from histopathology. DEPLOY integrates three distinct components: the first classifies CNS tumors directly from slide images ('direct model'), the second initially generates predictions for DNA methylation beta values, which are subsequently used for tumor classification ('indirect model'), and the third classifies tumor types directly from routinely available patient demographics. First, we find that DEPLOY accurately predicts beta values from histopathology images. Second, using a ten-class model trained on an internal dataset of 1,796 patients, we predict the tumor categories in three independent external test datasets including 2,156 patients, achieving an overall accuracy of 95% and balanced accuracy of 91% on samples that are predicted with high confidence. These results showcase the potential future use of DEPLOY to assist pathologists in diagnosing CNS tumors within a clinically relevant short time frame. A deep learning model is used to classify central nervous system tumors based on their DNA methylation profile directly from histopathology, and showed high accuracy in a large set of external validation cohorts, potentially informing downstream treatment.
引用
收藏
页码:1952 / 1961
页数:10
相关论文
共 50 条
  • [1] Integrated deep learning model for predicting DNA methylation and tumor types from histopathology in central nervous system tumors
    Shulman, Eldad David
    Hoang, Danh-Tai
    Turakulov, Rust
    Abdullaev, Zied
    Singh, Omkar
    Campagnolo, Emma M.
    Stone, Eric A.
    Nasrallah, MacLean P.
    Ruppin, Eytan
    Aldape, Kenneth
    CANCER RESEARCH, 2024, 84 (06)
  • [2] Toward methylation-based classification of central nervous system tumors
    Hegi, Monika E.
    Kleihues, Paul
    Wen, Patrick Y.
    Suva, Mario L.
    NEURO-ONCOLOGY, 2018, 20 (05) : 579 - 581
  • [3] Integrated deep learning model for prediction of DNA methylation and tumor type from histopathology in CNS tumors
    Aldape, K.
    Hoang, D.
    Shulman, E.
    Nasrallah, M.
    Campagnolo, E.
    Abdullaev, Z.
    Lalchungnunga, H.
    Singh, O.
    Stone, E.
    Ruppin, E.
    JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2024, 83 (06): : 434 - 434
  • [4] DNA methylation-based classification of central nervous system tumours
    David Capper
    David T. W. Jones
    Martin Sill
    Volker Hovestadt
    Daniel Schrimpf
    Dominik Sturm
    Christian Koelsche
    Felix Sahm
    Lukas Chavez
    David E. Reuss
    Annekathrin Kratz
    Annika K. Wefers
    Kristin Huang
    Kristian W. Pajtler
    Leonille Schweizer
    Damian Stichel
    Adriana Olar
    Nils W. Engel
    Kerstin Lindenberg
    Patrick N. Harter
    Anne K. Braczynski
    Karl H. Plate
    Hildegard Dohmen
    Boyan K. Garvalov
    Roland Coras
    Annett Hölsken
    Ekkehard Hewer
    Melanie Bewerunge-Hudler
    Matthias Schick
    Roger Fischer
    Rudi Beschorner
    Jens Schittenhelm
    Ori Staszewski
    Khalida Wani
    Pascale Varlet
    Melanie Pages
    Petra Temming
    Dietmar Lohmann
    Florian Selt
    Hendrik Witt
    Till Milde
    Olaf Witt
    Eleonora Aronica
    Felice Giangaspero
    Elisabeth Rushing
    Wolfram Scheurlen
    Christoph Geisenberger
    Fausto J. Rodriguez
    Albert Becker
    Matthias Preusser
    Nature, 2018, 555 : 469 - 474
  • [5] DNA methylation-based classification of central nervous system tumours
    Capper, David
    Jones, David T. W.
    Sill, Martin
    Hovestadt, Volker
    Schrimpf, Daniel
    Sturm, Dominik
    Koelsche, Christian
    Sahm, Felix
    Chavez, Lukas
    Reuss, David E.
    Kratz, Annekathrin
    Wefers, Annika K.
    Huang, Kristin
    Pajtler, Kristian W.
    Schweizer, Leonille
    Stichel, Damian
    Olar, Adriana
    Engel, Nils W.
    Lindenberg, Kerstin
    Harter, Patrick N.
    Braczynski, Anne K.
    Plate, Karl H.
    Dohmen, Hildegard
    Garvalov, Boyan K.
    Coras, Roland
    Hoelsken, Annett
    Hewer, Ekkehard
    Bewerunge-Hudler, Melanie
    Schick, Matthias
    Fischer, Roger
    Beschorner, Rudi
    Schittenhelm, Jens
    Staszewski, Ori
    Wani, Khalida
    Varlet, Pascale
    Pages, Melanie
    Temming, Petra
    Lohmann, Dietmar
    Selt, Florian
    Witt, Hendrik
    Milde, Till
    Witt, Olaf
    Aronica, Eleonora
    Giangaspero, Felice
    Rushing, Elisabeth
    Scheurlen, Wolfram
    Geisenberger, Christoph
    Rodriguez, Fausto J.
    Becker, Albert
    Preusser, Matthias
    NATURE, 2018, 555 (7697) : 469 - +
  • [6] Comprehensive study of semi-supervised learning for DNA methylation-based supervised classification of central nervous system tumors
    Tran, Quynh T.
    Alom, Md Zahangir
    Orr, Brent A.
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [7] Comprehensive study of semi-supervised learning for DNA methylation-based supervised classification of central nervous system tumors
    Quynh T. Tran
    Md Zahangir Alom
    Brent A. Orr
    BMC Bioinformatics, 23
  • [8] DistSNE: Distributed computing and online visualization of DNA methylation-based central nervous system tumor classification
    Schmid, Kai
    Sehring, Jannik
    Nemeth, Attila
    Harter, Patrick N.
    Weber, Katharina J.
    Vengadeswaran, Abishaa
    Storf, Holger
    Seidemann, Christian
    Karki, Kapil
    Fischer, Patrick
    Dohmen, Hildegard
    Selignow, Carmen
    von Deimling, Andreas
    Grau, Stefan
    Schroeder, Uwe
    Plate, Karl H.
    Stein, Marco
    Uhl, Eberhard
    Acker, Till
    Amsel, Daniel
    BRAIN PATHOLOGY, 2024, 34 (03)
  • [9] COMPARISON OF SUPERVISED CLASSIFICATION METHODS FOR CENTRAL NERVOUS SYSTEM TUMORS BASED ON DNA-METHYLATION
    Orr, Brent
    Breuer, Alex
    Lin, Tong
    Quynh Tran
    Suh, Edward
    Pounds, Stanley
    NEURO-ONCOLOGY, 2020, 22 : 428 - 429
  • [10] Comparison of DNA methylation based classification models for precision diagnostics of central nervous system tumors
    Tran, Quynh T.
    Breuer, Alex
    Lin, Tong
    Tatevossian, Ruth
    Allen, Sariah J.
    Clay, Michael
    Furtado, Larissa V.
    Chen, Mark
    Hedges, Dale
    Michael, Tylman
    Robinson, Giles
    Northcott, Paul
    Gajjar, Amar
    Azzato, Elizabeth
    Shurtleff, Sheila
    Ellison, David W.
    Pounds, Stanley
    Orr, Brent A.
    NPJ PRECISION ONCOLOGY, 2024, 8 (01)