Jones matrix of inhomogeneous field induced medium

被引:0
|
作者
Guo Z. [1 ,2 ]
Mo C. [1 ]
Xiao Z. [1 ]
Zhang G. [1 ,2 ]
Yu W. [1 ,2 ]
Wang G. [2 ]
机构
[1] School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin
[2] Harbin Institute of Technology at Zhangjiakou, Zhangjiakou, 075421, Hebei
关键词
Inhomogeneous field induced medium; Jones matrix; Medium induction angle; Medium inhomogeneous angle; Medium phase delay; Optical effect;
D O I
10.11918/j.issn.0367-6234.201804052
中图分类号
学科分类号
摘要
In order to accurately describe the Jones matrix of inhomogeneous field induced medium, elemental parameters in Jones matrix were studied. The physical parameters' expression of Jones matrix based on the mathematical method of cascading micro-member Jones matrix was derived by means of unitary transformation. Theoretical research showed that the uneven distribution of the cross-section induction angle along the optical path was the reason for the multi-diagonal element of Jones matrix. The Jones matrix of the inhomogeneous field induced medium could be completely characterized by the physical parameters of medium phase delay, medium induction angle, and medium inhomogeneous angle. These physical parameters were the integrals of the corresponding section induced tensor components, among which the medium inhomogeneous angle could essentially characterize the sensing unevenness degree of the medium. The physical experiments of inhomogeneous magneto-optical mediums indicated that the off-diagonal elements of the Jones matrix on inhomogeneous field induced medium were complex numbers. The physical parameter simulation experiments of Jones matrix showed that the theoretical derivation of this paper had certain correctness. In general, the analytical expression of Jones matrix on inhomogeneous field induced medium is universal by considering not only all kinds of optical effects but also uniform and uneven conditions, where the Jones matrix on uniform medium is a special case. © 2019, Editorial Board of Journal of Harbin Institute of Technology. All right reserved.
引用
收藏
页码:35 / 42
页数:7
相关论文
共 11 条
  • [1] Jones R.C., A new calculus for the treatment of optical systems. I. Description and Discussion of the calculus, Journal of the Optical Society of America, 31, 7, (1942)
  • [2] Hurwitz H., Jones R.C., A new calculus for the treatment of optical systems: II. Proof of three general equivalence theorems, Journal of the Optical Society of America, 31, 7, (1941)
  • [3] Sun G., Jin S., Analysis of Jones matrix of birefringent crystal, Applied Optics, 4, (2005)
  • [4] Zhao Y., Guo Z., Bai D., Research on Jones matrix of distributed parameter of electro-optical crystal, Optoelectronics Technology, 35, 2, (2015)
  • [5] He Q., Method of Jones matrix of matrix optics and its application in polarized light, Journal of Southwest University(Natural Science Edition), 40, 5, (2014)
  • [6] Marquez A., Campos J., Yzuel M.J., Et al., Characterization of edge effects in twisted nematic liquid crystal displays, Optical Engineering, 39, 12, (2000)
  • [7] Yamauchi M., Jones-matrix models for twisted-nematic liquid-crystal devices, Applied Optics, 44, 21, (2005)
  • [8] Xiao Z., Theoretic research on magneto optical rotation effect in inhomogeneous magnetic field and application to optical current sensing technology, (2017)
  • [9] Zhang G., Research on theory and practicality of optical current transformer, (2005)
  • [10] Cheng S., The effect of linear birefringence on sensing characteristics of fiber optic current transformer, (2016)