On Singer's conjecture for the fourth algebraic transfer in certain generic degrees

被引:1
|
作者
Phuc, Dang Vo [1 ]
机构
[1] FPT Univ, Dept Informat Technol, Quy Nhon AI Campus, Quy Nhon, Binh Dinh, Vietnam
关键词
Steenrod algebra; Peterson hit problem; Algebraic transfer; Lambda algebra; STEENROD SQUARES; ELEMENTS;
D O I
10.1007/s40062-024-00351-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be the Steenrod algebra over the finite field k:=F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k:= {\mathbb {F}}_2$$\end{document} and G(q) be the general linear group of rank q over k. A well-known open problem in algebraic topology is the explicit determination of the cohomology groups of the Steenrod algebra, ExtAq,& lowast;(k,k),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Ext}<^>{q, *}_A(k, k),$$\end{document} for all homological degrees q >= 0.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \geqslant 0.$$\end{document} The Singer algebraic transfer of rank q, formulated by William Singer in 1989, serves as a valuable method for describing that Ext groups. This transfer maps from the coinvariants of a certain representation of G(q) to ExtAq,& lowast;(k,k).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{Ext}<^>{q, *}_A(k, k).$$\end{document} Singer predicted that the algebraic transfer is always injective, but this has gone unanswered for all q >= 4.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\geqslant 4.$$\end{document} This paper establishes Singer's conjecture for rank four in the generic degrees n=2s+t+1+2s+1-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 2<^>{s+t+1} +2<^>{s+1} - 3$$\end{document} whenever t not equal 3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ne 3$$\end{document} and s >= 1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\geqslant 1,$$\end{document} and n=2s+t+2s-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = 2<^>{s+t} + 2<^>{s} - 2$$\end{document} whenever t not equal 2,3,4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\ne 2,\, 3,\, 4$$\end{document} and s >= 1. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\geqslant 1.$$\end{document} In conjunction with our previous results, this completes the proof of the Singer conjecture for rank four.
引用
收藏
页码:431 / 473
页数:43
相关论文
共 50 条