Systematic multi-trait AAV capsid engineering for efficient gene delivery

被引:4
|
作者
Eid, Fatma-Elzahraa [1 ,2 ]
Chen, Albert T. [1 ]
Chan, Ken Y. [1 ]
Huang, Qin [1 ]
Zheng, Qingxia [1 ]
Tobey, Isabelle G. [1 ]
Pacouret, Simon [1 ]
Brauer, Pamela P. [1 ]
Keyes, Casey [1 ]
Powell, Megan [1 ]
Johnston, Jencilin [1 ]
Zhao, Binhui [1 ]
Lage, Kasper [1 ,3 ,4 ,5 ]
Tarantal, Alice F. [6 ]
Chan, Yujia A. [1 ]
Deverman, Benjamin E. [1 ]
机构
[1] Broad Inst MIT & Harvard, Stanley Ctr Psychiat Res, Cambridge, MA 02142 USA
[2] Al Azhar Univ, Fac Engn, Dept Syst & Comp Engn, Cairo, Egypt
[3] Massachusetts Gen Hosp, Dept Surg, Boston, MA USA
[4] Broad Inst MIT & Harvard, Novo Nordisk Fdn, Ctr Genom Mech Dis, Cambridge, MA USA
[5] Mental Hlth Ctr St Hans, Inst Biol Psychiat, Mental Hlth Serv, Copenhagen, Denmark
[6] Univ Calif Davis, Calif Natl Primate Res Ctr, Sch Med, Dept Cell Biol & Human Anat, Davis, CA 95616 USA
基金
美国国家卫生研究院;
关键词
DIRECTED EVOLUTION; TRANSDUCTION; VARIANTS;
D O I
10.1038/s41467-024-50555-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Broadening gene therapy applications requires manufacturable vectors that efficiently transduce target cells in humans and preclinical models. Conventional selections of adeno-associated virus (AAV) capsid libraries are inefficient at searching the vast sequence space for the small fraction of vectors possessing multiple traits essential for clinical translation. Here, we present Fit4Function, a generalizable machine learning (ML) approach for systematically engineering multi-trait AAV capsids. By leveraging a capsid library that uniformly samples the manufacturable sequence space, reproducible screening data are generated to train accurate sequence-to-function models. Combining six models, we designed a multi-trait (liver-targeted, manufacturable) capsid library and validated 88% of library variants on all six predetermined criteria. Furthermore, the models, trained only on mouse in vivo and human in vitro Fit4Function data, accurately predicted AAV capsid variant biodistribution in macaque. Top candidates exhibited production yields comparable to AAV9, efficient murine liver transduction, up to 1000-fold greater human hepatocyte transduction, and increased enrichment relative to AAV9 in a screen for liver transduction in macaques. The Fit4Function strategy ultimately makes it possible to predict cross-species traits of peptide-modified AAV capsids and is a critical step toward assembling an ML atlas that predicts AAV capsid performance across dozens of traits. Conventional selections of AAV capsid libraries are inefficient at searching sequence space. Here the authors report 'Fit4Function', a generalizable ML approach for systematically engineering multi-trait AAV capsids, and use this to predict cross-species traits of peptide-modified AAV capsids.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Fit4Function: A Machine Learning-Guided Approach for Systematic Multi-Trait AAV Capsid Engineering
    Eid, Fatma-Elzahraa
    Chan, Ken Y.
    Chen, Albert T.
    Huang, Qin
    Tobey, Isabelle G.
    Zheng, Qingxia
    Pacouret, Simon
    Lage, Kasper
    Chan, Yujia Alina
    Deverman, Benjamin E.
    MOLECULAR THERAPY, 2022, 30 (04) : 558 - 559
  • [2] Improving the efficiency of AAV gene delivery vectors via capsid design and bioprocess engineering
    Hall, L.
    Massaro, G.
    Rahim, A.
    Majumder, P.
    Rafiq, Q.
    HUMAN GENE THERAPY, 2022, 33 (23-24) : A40 - A40
  • [3] IMPROVING THE EFFICIENCY OF AAV GENE DELIVERY VECTORS VIA CAPSID DESIGN AND BIOPROCESS ENGINEERING
    Hall, L.
    Rafiq, Q. A.
    CYTOTHERAPY, 2024, 26 (06) : S210 - S210
  • [4] A Penetrable AAV2 Capsid Variant for Efficient Intravitreal Gene Delivery to the Retina
    He, Xiaoyu
    Fu, Yidian
    Xu, Yangfan
    Ma, Liang
    Chai, Peiwei
    Shi, Hanhan
    Yao, Yizheng
    Ge, Shengfang
    Jia, Renbing
    Wen, Xuyang
    Yang, Zhi
    Fan, Xianqun
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2025, 66 (01)
  • [5] Genetic Engineering of AAV Capsid Gene for Gene Therapy Application
    Liu, Yunbo
    Zhang, Xu
    Yang, Lin
    CURRENT GENE THERAPY, 2020, 20 (05) : 321 - 332
  • [6] Engineering AAV Capsid Variants to Overcome Pre-Existing Immunity and Improve Gene Delivery to Human Liver
    Feiner, Rebecca
    Hill, Jake
    Pilla, Dario
    Aungier, Juliet
    Ravi, Sujata
    Allen, Olivia
    Shehu, Erald
    Horer, Markus
    Dane, Allison
    MOLECULAR THERAPY, 2022, 30 (04) : 65 - 65
  • [7] Investigation of AAV-Like Capsid Candidates for Functional Gene Delivery
    Madigan, Victoria Jane
    Puccio, Elena
    Zhang, Feng
    MOLECULAR THERAPY, 2022, 30 (04) : 70 - 70
  • [8] Efficient Gene Delivery and Expression in Pancreas and Pancreatic Tumors by Capsid-Optimized AAV8 Vectors
    Chen, Min
    Maeng, Kyungah
    Nawab, Akbar
    Francois, Rony A.
    Bray, Julie K.
    Reinhard, Mary K.
    Boye, Sanford L.
    Hauswirth, William W.
    Kaye, Frederic J.
    Aslanidi, Georgiy
    Srivastava, Arun
    Zajac-Kaye, Maria
    HUMAN GENE THERAPY METHODS, 2017, 28 (01) : 49 - 59
  • [9] Engineering Novel AAV Capsids for Cardiac Gene Delivery
    Cheng, Ze
    Easter, Emilee
    Feathers, Charles
    Leong, Jackson
    Lim, Beatriz
    Jones, Samantha
    Woods, Joe
    Parvathaneni, Alekhya
    Reid, Christopher A.
    Nettesheim, Emily R.
    Doerner, Karl
    Lin, JianMin
    Jing, Frank
    Tingley, Whittemore
    Hoey, Timothy
    Ivey, Kathryn N.
    Lombardi, Laura M.
    MOLECULAR THERAPY, 2023, 31 (04) : 238 - 238
  • [10] Computationally guided AAV engineering for enhanced gene delivery
    Guo, Jingxuan
    Lin, Li F.
    Oraskovich, Sydney V.
    Jesus, Julio A. Rivera de
    Listgarten, Jennifer
    V. Schaffer, David
    TRENDS IN BIOCHEMICAL SCIENCES, 2024, 49 (05) : 457 - 469