共 50 条
Systematic multi-trait AAV capsid engineering for efficient gene delivery
被引:4
|作者:
Eid, Fatma-Elzahraa
[1
,2
]
Chen, Albert T.
[1
]
Chan, Ken Y.
[1
]
Huang, Qin
[1
]
Zheng, Qingxia
[1
]
Tobey, Isabelle G.
[1
]
Pacouret, Simon
[1
]
Brauer, Pamela P.
[1
]
Keyes, Casey
[1
]
Powell, Megan
[1
]
Johnston, Jencilin
[1
]
Zhao, Binhui
[1
]
Lage, Kasper
[1
,3
,4
,5
]
Tarantal, Alice F.
[6
]
Chan, Yujia A.
[1
]
Deverman, Benjamin E.
[1
]
机构:
[1] Broad Inst MIT & Harvard, Stanley Ctr Psychiat Res, Cambridge, MA 02142 USA
[2] Al Azhar Univ, Fac Engn, Dept Syst & Comp Engn, Cairo, Egypt
[3] Massachusetts Gen Hosp, Dept Surg, Boston, MA USA
[4] Broad Inst MIT & Harvard, Novo Nordisk Fdn, Ctr Genom Mech Dis, Cambridge, MA USA
[5] Mental Hlth Ctr St Hans, Inst Biol Psychiat, Mental Hlth Serv, Copenhagen, Denmark
[6] Univ Calif Davis, Calif Natl Primate Res Ctr, Sch Med, Dept Cell Biol & Human Anat, Davis, CA 95616 USA
基金:
美国国家卫生研究院;
关键词:
DIRECTED EVOLUTION;
TRANSDUCTION;
VARIANTS;
D O I:
10.1038/s41467-024-50555-y
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Broadening gene therapy applications requires manufacturable vectors that efficiently transduce target cells in humans and preclinical models. Conventional selections of adeno-associated virus (AAV) capsid libraries are inefficient at searching the vast sequence space for the small fraction of vectors possessing multiple traits essential for clinical translation. Here, we present Fit4Function, a generalizable machine learning (ML) approach for systematically engineering multi-trait AAV capsids. By leveraging a capsid library that uniformly samples the manufacturable sequence space, reproducible screening data are generated to train accurate sequence-to-function models. Combining six models, we designed a multi-trait (liver-targeted, manufacturable) capsid library and validated 88% of library variants on all six predetermined criteria. Furthermore, the models, trained only on mouse in vivo and human in vitro Fit4Function data, accurately predicted AAV capsid variant biodistribution in macaque. Top candidates exhibited production yields comparable to AAV9, efficient murine liver transduction, up to 1000-fold greater human hepatocyte transduction, and increased enrichment relative to AAV9 in a screen for liver transduction in macaques. The Fit4Function strategy ultimately makes it possible to predict cross-species traits of peptide-modified AAV capsids and is a critical step toward assembling an ML atlas that predicts AAV capsid performance across dozens of traits. Conventional selections of AAV capsid libraries are inefficient at searching sequence space. Here the authors report 'Fit4Function', a generalizable ML approach for systematically engineering multi-trait AAV capsids, and use this to predict cross-species traits of peptide-modified AAV capsids.
引用
收藏
页数:14
相关论文