Boundedness of certain linear operators on twisted Fock spaces

被引:0
|
作者
Garg, Rahul [1 ]
Thangavelu, Sundaram [2 ]
机构
[1] Indian Inst Sci Educ & Res Bhopal, Dept Math, Bhopal 462066, India
[2] Indian Inst Sci, Dept Math, Bangalore 560012, India
关键词
Weyl transform; Segal-Bargmann transform; Twisted Bergman spaces; Twisted Fock spaces; Uncertainty principle; WEYL TRANSFORM;
D O I
10.1007/s00209-024-03500-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On the twisted Fock spaces F-lambda(C-2n) we consider two types of convolution operators S-phi(lambda) and (sic)S-phi(lambda) associated to an element phi is an element of F-lambda(C-2n). We find a necessary and sufficient condition on phi so that S-phi(lambda)(resp. (sic)S-phi(lambda)) is bounded on F-lambda(C-2n). We show that for any given non constant phi at least one of these two operators is unbounded.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] BOUNDEDNESS AND COMPACTNESS OF HAUSDORFF OPERATORS ON FOCK SPACES
    Blasco, Oscar
    Galbis, Antonio
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024,
  • [2] Linear Operators on Fock Spaces
    Zengjian Lou
    Kehe Zhu
    Senhua Zhu
    [J]. Integral Equations and Operator Theory, 2017, 88 : 287 - 300
  • [3] Linear Operators on Fock Spaces
    Lou, Zengjian
    Zhu, Kehe
    Zhu, Senhua
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2017, 88 (02) : 287 - 300
  • [4] BOUNDEDNESS IN CERTAIN TOPOLOGICAL LINEAR SPACES
    BARNES, BA
    ROY, AK
    [J]. STUDIA MATHEMATICA, 1969, 33 (02) : 147 - &
  • [5] THE BOUNDEDNESS OF CERTAIN OPERATORS ON HOLDER AND SOBOLEV SPACES
    Su Weiyi (Nanjing University
    [J]. Analysis in Theory and Applications, 1997, (01) : 18 - 32
  • [6] Boundedness criterion for integral operators on the fractional Fock–Sobolev spaces
    Guangfu Cao
    Li He
    Ji Li
    Minxing Shen
    [J]. Mathematische Zeitschrift, 2022, 301 : 3671 - 3693
  • [7] Boundedness criterion for integral operators on the fractional Fock-Sobolev spaces
    Cao, Guangfu
    He, Li
    Li, Ji
    Shen, Minxing
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (04) : 3671 - 3693
  • [8] Linear operators in certain BK spaces
    Malkowsky, E
    [J]. APPROXIMATION THEORY AND FUNCTION SERIES, 1996, 5 : 259 - 273
  • [9] A GENERALIZATION OF THE BOUNDEDNESS OF CERTAIN INTEGRAL OPERATORS IN VARIABLE LEBESGUE SPACES
    Susana Urciuolo, Marta
    Alejandro Vallejos, Lucas
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (02): : 547 - 557
  • [10] Boundedness of generalized Cesaro averaging operators on certain function spaces
    Agrawal, MR
    Howlett, PG
    Lucas, SK
    Naik, S
    Ponnusamy, S
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 180 (02) : 333 - 344