The cantor set and inverse limits of upper semi-continuous functions

被引:0
|
作者
Capulin, Felix [1 ]
del Portal, Francisco R. Ruiz [2 ]
Sanchez-Garrido, Monica [1 ]
机构
[1] Univ Autonoma Estado Mexico, Fac Ciencias, Dept Math, Inst Literario 100, Toluca 50000, Estado De Mexic, Mexico
[2] Univ Complutense Madrid, Dept Algebra Geometria & Topol, Madrid, Spain
来源
关键词
Inverse limits; Upper semi-continuous functions; Cantor set; BONDING FUNCTIONS; GRAPHS;
D O I
10.1007/s40590-024-00651-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study inverse limits with a single upper semi-continuous function F such that it is the union of mappings defined from a compact metric space X into itself. We prove that if Dom(F) is a totally disconnected space, then (sic) (X,F) is homeomorphic to the Cantor set. This gives a partial answer to a problem posed by Ingram (Topol Appl 299:1-11, 2021), and it answers a question asked by Capulin et al. (Topol Proc 60:71-80, 2022).
引用
收藏
页数:12
相关论文
共 50 条