Generalized quantum geometric tensor in a non-Hermitian exciton-polariton system [Invited]

被引:1
|
作者
Hu, Y. -M. Robin
Ostrovskaya, Elena A.
Estrecho, Eliezer [1 ]
机构
[1] Australian Natl Univ, ARC Ctr Excellence Future Low Energy Elect Techno, Canberra, ACT 2601, Australia
来源
OPTICAL MATERIALS EXPRESS | 2024年 / 14卷 / 03期
基金
澳大利亚研究理事会;
关键词
BERRY-PHASE; HAMILTONIANS; DYNAMICS; FIDELITY;
D O I
10.1364/OME.497010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we review different generalizations of the quantum geometric tensor (QGT) in two-band non-Hermitian systems and propose a protocol for measuring them in experiments. We present the generalized QGT components, i.e., the quantum metric and Berry curvature, for a non-Hermitian hybrid photonic (exciton-polariton) system and show that the generalized non-Hermitian QGT can be constructed from experimental observables. In particular, we extend the existing method of measuring the QGT that uses the pseudospins in photonic and exciton-polariton systems by suggesting a method to construct the left eigenstates from experiments. We also show that the QGT components have clear signatures in wave-packet dynamics, where the anomalous Hall drift arises from both the non-Hermitian Berry curvature and Berry connection, suggesting that both left and right eigenstates are necessary for defining non-Hermitian band geometries and topologies.
引用
收藏
页码:664 / 686
页数:23
相关论文
共 50 条
  • [1] Non-Hermitian topological exciton-polariton corner modes
    Xu, Xingran
    Bao, Ruiqi
    Liew, Timothy C. H.
    [J]. PHYSICAL REVIEW B, 2022, 106 (20)
  • [2] Non-Hermitian spectrum and multistability in exciton-polariton condensates
    Yu, Zi-Fa
    Xue, Ju-Kui
    Zhuang, Lin
    Zhao, Jinkui
    Liu, Wu-Ming
    [J]. PHYSICAL REVIEW B, 2021, 104 (23)
  • [3] Wave-packet dynamics in a non-Hermitian exciton-polariton system
    Hu, Y. -M. Robin
    Ostrovskaya, Elena A.
    Estrecho, Eliezer
    [J]. PHYSICAL REVIEW B, 2023, 108 (11)
  • [4] Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard
    T. Gao
    E. Estrecho
    K. Y. Bliokh
    T. C. H. Liew
    M. D. Fraser
    S. Brodbeck
    M. Kamp
    C. Schneider
    S. Höfling
    Y. Yamamoto
    F. Nori
    Y. S. Kivshar
    A. G. Truscott
    R. G. Dall
    E. A. Ostrovskaya
    [J]. Nature, 2015, 526 : 554 - 558
  • [5] Topological enhancement of exciton-polariton coherence with non-Hermitian morphing
    Bao, Ruiqi
    Xu, Huawen
    Verstraelen, Wouter
    Liew, Timothy C. H.
    [J]. PHYSICAL REVIEW B, 2023, 108 (23)
  • [6] Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard
    Gao, T.
    Estrecho, E.
    Bliokh, K. Y.
    Liew, T. C. H.
    Fraser, M. D.
    Brodbeck, S.
    Kamp, M.
    Schneider, C.
    Hoefling, S.
    Yamamoto, Y.
    Nori, F.
    Kivshar, Y. S.
    Truscott, A. G.
    Dall, R. G.
    Ostrovskaya, E. A.
    [J]. NATURE, 2015, 526 (7574) : 554 - U203
  • [7] Non-Hermitian coupled-mode theory for incoherently pumped exciton-polariton condensates
    Khan, S.
    Tureci, H. E.
    [J]. PHYSICAL REVIEW A, 2016, 94 (05)
  • [8] Measuring the quantum geometric tensor in two-dimensional photonic and exciton-polariton systems
    Bleu, O.
    Solnyshkov, D. D.
    Malpuech, G.
    [J]. PHYSICAL REVIEW B, 2018, 97 (19)
  • [9] Quantum computing with exciton-polariton condensates
    Sanjib Ghosh
    Timothy C. H. Liew
    [J]. npj Quantum Information, 6
  • [10] Non-Hermitian quantum systems and their geometric phases
    Zhang, Qi
    Wu, Biao
    [J]. PHYSICAL REVIEW A, 2019, 99 (03)