DeepSplit: Scalable Verification of Deep Neural Networks via Operator Splitting

被引:3
|
作者
Chen, Shaoru [1 ]
Wong, Eric [2 ]
Kolter, J. Zico [3 ]
Fazlyab, Mahyar [4 ]
机构
[1] University of Pennsylvania, Philadelphia,PA,19104, United States
[2] Massachusetts Institute of Technology, Cambridge,MA,02139, United States
[3] Carnegie Mellon University, Pittsburgh,PA,15213, United States
[4] Johns Hopkins University, Baltimore,MD,21218, United States
来源
关键词
D O I
10.1109/OJCSYS.2022.3187429
中图分类号
学科分类号
摘要
49
引用
收藏
页码:126 / 140
相关论文
共 50 条
  • [1] DEEPSPLIT: An Efficient Splitting Method for Neural Network Verification via Indirect Effect Analysis
    Henriksen, Patrick
    Lomuscio, Alessio
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2549 - 2555
  • [2] Scalable Quantitative Verification For Deep Neural Networks
    Baluta, Teodora
    Chua, Zheng Leong
    Meel, Kuldeep S.
    Saxena, Prateek
    [J]. 2021 IEEE/ACM 43RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: COMPANION PROCEEDINGS (ICSE-COMPANION 2021), 2021, : 248 - 249
  • [3] Scalable Quantitative Verification For Deep Neural Networks
    Baluta, Teodora
    Chua, Zlieng Leong
    Meel, Kuldeep S.
    Saxena, Prateek
    [J]. 2021 IEEE/ACM 43RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE 2021), 2021, : 312 - 323
  • [4] DeepSplit: Dynamic Splitting of Collaborative Edge-Cloud Convolutional Neural Networks
    Mehta, Rishabh
    Shorey, Rajeev
    [J]. 2020 INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS (COMSNETS), 2020,
  • [5] Scalable Verification of Quantized Neural Networks
    Henzinger, Thomas A.
    Lechner, Mathias
    Zikelic, Dorde
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 3787 - 3795
  • [6] Splitting of Composite Neural Networks via Proximal Operator With Information Bottleneck
    Han, Sang-Il
    Nakamura, Kensuke
    Hong, Byung-Woo
    [J]. IEEE ACCESS, 2024, 12 (157-167) : 157 - 167
  • [7] Efficient Complete Verification of Neural Networks via Layerwised Splitting and Refinement
    Yin, Banghu
    Chen, Liqian
    Liu, Jiangchao
    Wang, Ji
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (11) : 3898 - 3909
  • [8] A Dual Approach to Scalable Verification of Deep Networks
    Dvijotham, Krishnamurthy
    Stanforth, Robert
    Gowal, Sven
    Mann, Timothy A.
    Kohli, Pushmeet
    [J]. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2018, : 550 - 559
  • [9] Scalable Polyhedral Verification of Recurrent Neural Networks
    Ryou, Wonryong
    Chen, Jiayu
    Balunovic, Mislav
    Singh, Gagandeep
    Dan, Andrei
    Vechev, Martin
    [J]. COMPUTER AIDED VERIFICATION (CAV 2021), PT I, 2021, 12759 : 225 - 248
  • [10] Enhancing Robustness Verification for Deep Neural Networks via Symbolic Propagation
    Yang, Pengfei
    Li, Jianlin
    Liu, Jiangchao
    Huang, Cheng-Chao
    Li, Renjue
    Chen, Liqian
    Huang, Xiaowei
    Zhang, Lijun
    [J]. FORMAL ASPECTS OF COMPUTING, 2021, 33 (03) : 407 - 435