First-principles study of the interaction of nitrogen with transition metal solutes in tungsten

被引:0
|
作者
He, Kang-Ni [1 ]
Jing, Shui-Qing [1 ]
Zhang, Yuan-Ye [1 ]
Chen, L. [1 ]
Xie, Z. M. [2 ]
Kong, Xiang-Shan [1 ]
机构
[1] Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Shandong, Peoples R China
[2] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, POB 1129, Hefei 230031, Peoples R China
基金
中国国家自然科学基金;
关键词
Tungsten; Nitrogen; Transition metal solutes; Interaction; First-principles calculations; TOTAL-ENERGY CALCULATIONS; PLASMA-FACING MATERIALS; MECHANICAL-PROPERTIES; 1ST PRINCIPLES; DIFFUSION; CARBON; IRRADIATION; RETENTION; COATINGS; HYDROGEN;
D O I
10.1016/j.jnucmat.2024.155118
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The choice of tungsten (W) as the plasma-facing material requires seeding impurities into the edge plasma for radiative cooling, and gaseous nitrogen (N) is one of the most likely impurities to be used for this purpose. In this work, first-principles calculations related to the interactions between N and transition metal (TM) solutes were performed. The interactions between the TM solutes and N are predominantly attractive and very localized. Specifically, the 3d solutes exhibit a stronger attraction to N than the 4d and 5d solutes. Consequently, most TM solutes can alter the N distribution, promoting the N aggregation within their neighboring shells, and impeding the N diffusion. Moreover, this effect is more conspicuous in the 3d solutes related to the 4d and 5d solutes. In the Sol-Vac-N complexes, the vacancy assumes a predominant role. Most TM solutes diminish the capability of vacancies to capture N. The exception arises in Ti, V, Zr, Nb, Hf, and Ta, where these solutes enhance the vacancies' ability to capture N. Further investigation revealed that, for Ti, V, Zr, Hf, Ta, and Os, the capacity of Sol-N pairs to adsorb the additional N and solute atoms is significant. As a result, it can be speculated that the Sol-N pairs for these solutes might continue to adsorb additional N and solute atoms, eventually evolving into nitrides. However, for the primary transmutation product Re, the capacity of Sol-N pairs to adsorb additional Re atoms is negligible. Therefore, it is inferred that the formation of Re nitride is rather unlikely during W's service life as plasma-facing materials.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] First-principles calculations of interaction between solutes and dislocations in tungsten
    Tsuru, T.
    Suzudo, T.
    NUCLEAR MATERIALS AND ENERGY, 2018, 16 : 221 - 225
  • [2] First-principles study on stability of transition metal solutes in aluminum by analyzing the underlying forces
    Liu, Wei
    Xu, Yichun
    Li, Xiangyan
    Wu, Xuebang
    Liu, C. S.
    Liang, Yunfeng
    Wang, Zhiguang
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (17)
  • [3] Interaction between impurity nitrogen and tungsten: a first-principles investigation
    Liu Yue-Lin
    Jin Shuo
    Zhang Ying
    CHINESE PHYSICS B, 2012, 21 (01)
  • [4] Interaction between impurity nitrogen and tungsten:a first-principles investigation
    刘悦林
    金硕
    张颖
    Chinese Physics B, 2012, 21 (01) : 346 - 351
  • [5] First-principles study of transition metal carbides
    Connetable, Damien
    MATERIALS RESEARCH EXPRESS, 2016, 3 (12):
  • [6] First-principles calculations of transition metal solute interactions with hydrogen in tungsten
    Kong, Xiang-Shan
    Wu, Xuebang
    Liu, C. S.
    Fang, Q. F.
    Hu, Q. M.
    Chen, Jun-Ling
    Luo, G. -N.
    NUCLEAR FUSION, 2016, 56 (02)
  • [7] First-principles study of transition metal impurities in Si
    Zhang, Z. Z.
    Partoens, B.
    Chang, Kai
    Peeters, F. M.
    PHYSICAL REVIEW B, 2008, 77 (15)
  • [8] Transition metal doped arsenene: A first-principles study
    Sun, Minglei
    Wang, Sake
    Du, Yanhui
    Yu, Jin
    Tang, Wencheng
    APPLIED SURFACE SCIENCE, 2016, 389 : 594 - 600
  • [9] A first-principles study of transition metal doped arsenene
    Liu, Mingyang
    Chen, Qingyuan
    Huang, Yang
    Cao, Chao
    He, Yao
    SUPERLATTICES AND MICROSTRUCTURES, 2016, 100 : 131 - 141
  • [10] Transition Metal Doped Phosphorene: First-Principles Study
    Hashmi, Arqum
    Hong, Jisang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (17): : 9198 - 9204