Metal(loid) bioaccessibility and risk assessment of ashfall deposit from Popocatépetl volcano, Mexico

被引:1
|
作者
Schiavo, Benedetto [1 ]
Meza-Figueroa, Diana [2 ]
Morton-Bermea, Ofelia [1 ]
Angulo-Molina, Aracely [3 ]
Gonzalez-Grijalva, Belem [2 ]
Armienta-Hernandez, Maria Aurora [1 ]
Inguaggiato, Claudio [4 ]
Berrellez-Reyes, Francisco [2 ]
Valera-Fernandez, Daisy [5 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City 04510, Mexico
[2] Univ Sonora, Dept Geol, Hermosillo 83000, Mexico
[3] Univ Sonora, Dept Ciencias Quim Biol, Hermosillo 83000, Mexico
[4] Ctr Invest Cient & Educ Super Ensenada Baja Calif, Dept Geol, Ensenada, Mexico
[5] Univ Nacl Autonoma Mexico, Inst Geol, Mexico City 04510, Mexico
关键词
Heavy metal; Lung bioaccessibility; Gamble solution; Artificial lysosomal fluids; Particle size; SOUFRIERE HILLS VOLCANO; SCALP HAIR; ASH; POPOCATEPETL; POLLUTION; METALS; CRISTOBALITE; MONTSERRAT; EMISSIONS; ERUPTIONS;
D O I
10.1007/s10653-024-02135-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ash emission from volcanic eruptions affects the environment, society, and human health. This study shows the total concentration and lung bioaccessible fraction of eight potential toxic metal(loid)s in five Popocat & eacute;petl ashfall samples. Mineralogical phases and particle size distribution of the ashfall were analyzed by X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) techniques, respectively. The bioaccessibility test of Gamble solution (GS) and Artificial Lysosomal Fluid (ALF) were conducted to simulate extracellular (pH 7) and intracellular (pH 4.5) conditions, respectively. The studied metal(loid)s showed the following total concentration (mg kg(-1)): 1.98 (As), 0.17 (Cd), 134.09 (Cr), 8.66 (Cu), 697.33 (Mn), 55.35 (Ni), 8.77 (Pb), and 104.10 (Zn). Geochemical indices suggested that some metal(loid)s are slightly enriched compared to the local soil background concentrations. Several mineralogical phases were identified in the collected ashfall deposits, such as plagioclase, pyroxene, and Fe-Ti oxide, among others. According to the risk assessment results, the non-carcinogenic risk related to ashfall exposure returns an HQ > 1 for children. In contrast, the estimation of carcinogenic risk was found to be within the tolerable limit. Metal(loid)s showed low bioaccessibility (< 30%) in GS and ALF, with the highest values found in ALF solution for As (12.18%) and Cu (7.57%). Despite their metal-bioaccessibility, our findings also showed that dominant ash particle size ranged between fine (< 2.5 mu m) and extremely fine (< 1 mu m), considered highly inhalable fractions. The results obtained in this work indicate that volcanic ashes are bioinsoluble and biodurable, and exhibit low bioaccessibility when in contact with lung human fluids.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Risk perception at a persistently active volcano: warnings and trust at Popocatépetl volcano in Mexico, 2012–2014
    Amy Donovan
    Irasema Alcántara Ayala
    J. R. Eiser
    R. S. J. Sparks
    Bulletin of Volcanology, 2018, 80
  • [2] Passive infrared spectroscopy of the eruption plume at Popocatépetl volcano, Mexico
    S. P. Love
    F. Goff
    D. Counce
    C. Siebe
    H. Delgado
    Nature, 1998, 396 : 563 - 567
  • [3] Hazard map for volcanic ballistic impacts at Popocatépetl volcano (Mexico)
    Miguel A. Alatorre-Ibargüengoitia
    Hugo Delgado-Granados
    Donald B. Dingwell
    Bulletin of Volcanology, 2012, 74 : 2155 - 2169
  • [4] Precursory seismicity of the 1994 eruption of Popocatépetl Volcano, Central Mexico
    Servando De la Cruz-Reyna
    Izumi Yokoyama
    Alicia Martínez-Bringas
    Esteban Ramos
    Bulletin of Volcanology, 2008, 70 : 753 - 767
  • [5] On the Composition of Airborne Particles Influenced by Emissions of the Volcano Popocatépetl in Mexico
    J. C. Jiménez
    G. B. Raga
    D. Baumgardner
    T. Castro
    I. Rosas
    A. Báez
    O. Morton
    Natural Hazards, 2004, 31 : 21 - 37
  • [6] Curie Temperatures and Emplacement Conditions of Pyroclastic Deposits From Popocatépetl Volcano, Mexico
    Dudzisz, K.
    Kontny, A.
    Alva-Valdivia, L.M.
    Geochemistry, Geophysics, Geosystems, 2022, 23 (08)
  • [7] Reconstructing 800 years of historical eruptive activity at Popocatépetl Volcano, Mexico
    Ana Lillian Martin-Del Pozzo
    Alan Rodríguez
    Jorge Portocarrero
    Bulletin of Volcanology, 2016, 78
  • [8] Metal enrichment of soils following the April 2012–2013 eruptive activity of the Popocatépetl volcano, Puebla, Mexico
    P. F. Rodriguez-Espinosa
    M. P. Jonathan
    S. S. Morales-García
    Lorena Elizabeth Campos Villegas
    E. Martínez-Tavera
    N. P. Muñoz-Sevilla
    Miguel Alvarado Cardona
    Environmental Monitoring and Assessment, 2015, 187
  • [9] An automated ash dispersion forecast system: case study Popocatépetl volcano, Mexico
    García A.R.
    Zavala-Hidalgo J.
    Delgado-Granados H.
    Garcia-Escalante J.
    Gómez-Ramos O.
    Herrera-Moro D.
    Journal of Applied Volcanology, 12 (1)
  • [10] The ongoing dome emplacement and destruction cyclic process at Popocatépetl volcano, Central Mexico
    Angel Gómez-Vazquez
    Servando De la Cruz-Reyna
    Ana Teresa Mendoza-Rosas
    Bulletin of Volcanology, 2016, 78