RING ENDOMORPHISMS SATISFYING Z-SYMMETRIC PROPERTY

被引:0
|
作者
Chaturvedi, Avanish Kumar [1 ]
Kumar, Nirbhay [1 ]
机构
[1] Univ Allahabad, Dept Math, Prayagraj 211002, India
来源
关键词
endomorphisms; Z-symmetric rings; alpha-skew reversible rings; alpha-skew Z symmetric rings;
D O I
10.47013/17.1.9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of alpha-skew Z-symmetric rings is introduced as a generalization of Z-symmetric rings. We prove that the notions of alpha-skew Z-symmetric rings and Z-symmetric rings are independent, and we give some sufficient conditions over which these notions are equivalent. We investigate some basic properties of alpha-skew Z-symmetric rings and give a characterization of them. Moreover, we provide some characterizations of alpha-skew Z-symmetric rings utilizing the Dorroh extension, triangular matrix ring etc. Finally, we generalize some results of Z-symmetric rings to alpha-skew Z-symmetric rings.
引用
收藏
页码:145 / 159
页数:15
相关论文
共 50 条
  • [1] Ring endomorphisms satisfying the central reversible property
    Arnab Bhattacharjee
    Uday Shankar Chakraborty
    Proceedings - Mathematical Sciences, 2020, 130
  • [2] Ring endomorphisms satisfying the central reversible property
    Bhattacharjee, Arnab
    Chakraborty, Uday Shankar
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2020, 130 (01):
  • [3] ON Z-SYMMETRIC MODULES
    Minh, B. P.
    Sanh, N., V
    JOURNAL OF ALGEBRAIC SYSTEMS, 2025, 13 (02):
  • [4] On Z-Symmetric Rings
    Chaturvedi, Avanish Kumar
    Kumar, Nirbhay
    Shum, K. P.
    MATHEMATICA SLOVACA, 2021, 71 (06) : 1361 - 1374
  • [5] Weakly Z-symmetric manifolds
    Carlo Alberto Mantica
    Luca Guido Molinari
    Acta Mathematica Hungarica, 2012, 135 : 80 - 96
  • [6] Weakly Z-symmetric manifolds
    Mantica, C. A.
    Molinari, L. G.
    ACTA MATHEMATICA HUNGARICA, 2012, 135 (1-2) : 80 - 96
  • [7] Spacetimes admitting the Z-symmetric tensor
    Zengin, Fusun Ozen
    Tasci, Ayse Yavuz
    QUAESTIONES MATHEMATICAE, 2021, 44 (11) : 1613 - 1623
  • [8] NOTES ON WEAKLY CYCLIC Z-SYMMETRIC MANIFOLDS
    Kim, Jaeman
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (01) : 227 - 237
  • [9] Z-Symmetric Manifolds Admitting Schouten Tensor
    Ali, Mohabbat
    Haseeb, Abdul
    Mofarreh, Fatemah
    Vasiulla, Mohd
    MATHEMATICS, 2022, 10 (22)
  • [10] Z-symmetric manifold admitting concircular Ricci symmetric tensor
    Tasci, A. Yavuz
    Zengin, F. Ozen
    AFRIKA MATEMATIKA, 2020, 31 (7-8) : 1093 - 1104