Fcd-cnn: FPGA-based CU depth decision for HEVC intra encoder using CNN

被引:2
|
作者
Dehnavi, Hossein [1 ]
Dehnavi, Mohammad [1 ]
Klidbary, Sajad Haghzad [2 ]
机构
[1] Kermanshah Univ Technol, Energy Fac, Dept Elect Engn, Kermanshah, Iran
[2] Univ Zanjan, Dept Elect & Comp Engn, Zanjan, Iran
关键词
FPGA; Video compression; Hardware architecture; HEVC;
D O I
10.1007/s11554-024-01487-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video compression for storage and transmission has always been a focal point for researchers in the field of image processing. Their efforts aim to reduce the data volume required for video representation while maintaining its quality. HEVC is one of the efficient standards for video compression, receiving special attention due to the increasing demand for high-resolution videos. The main step in video compression involves dividing the coding unit (CU) blocks into smaller blocks that have a uniform texture. In traditional methods, The Discrete Cosine Transform (DCT) is applied, followed by the use of RDO for decision-making on partitioning. This paper presents a novel convolutional neural network (CNN) and its hardware implementation as an alternative to DCT, aimed at speeding up partitioning and reducing the hardware resources required. The proposed hardware utilizes an efficient and lightweight CNN to partition CUs with low hardware resources in real-time applications. This CNN is trained for different Quantization Parameters (QPs) and block sizes to prevent overfitting. Furthermore, the system's input size is fixed at 16x16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$16\times 16$$\end{document}, and other input sizes are scaled to this dimension. Loop unrolling, data reuse, and resource sharing are applied in hardware implementation to save resources. The hardware architecture is fixed for all block sizes and QPs, and only the coefficients of the CNN are changed. In terms of compression quality, the proposed hardware achieves a 4.42%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4.42\%$$\end{document} BD-BR and -0.19\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,0.19$$\end{document} BD-PSNR compared to HM16.5. The proposed system can process 64x64\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$64\times 64$$\end{document} CU at 150 MHz and in 4914 clock cycles. The hardware resources utilized by the proposed system include 13,141 LUTs, 15,885 Flip-flops, 51 BRAMs, and 74 DSPs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] CNN Oriented Fast HEVC Intra CU Mode Decision
    Liu, Zhenyu
    Yu, Xianyu
    Chen, Shaolin
    Wang, Dongsheng
    2016 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2016, : 2270 - 2273
  • [2] CNN ORIENTED FAST PU MODE DECISION FOR HEVC HARDWIRED INTRA ENCODER
    Song, Nan
    Liu, Zhenyu
    Ji, Xiangyang
    Wang, Dongsheng
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 239 - 243
  • [3] Fast CU Size Decision based on AQ-CNN for Depth Intra Coding in 3D-HEVC
    Chen, Yamei
    Yu, Li
    Li, Tiansong
    Wang, Hongkui
    Wang, Shengwei
    2019 DATA COMPRESSION CONFERENCE (DCC), 2019, : 561 - 561
  • [4] CNN Quadtree Depth Decision Prediction for Block Partitioning in HEVC Intra-Mode
    Linck, Iris
    Gomez, Arthur Torgo
    Alaghband, Gita
    2023 DATA COMPRESSION CONFERENCE, DCC, 2023, : 352 - 352
  • [5] Optimization of FPGA-based CNN accelerators using metaheuristics
    Sadiq M. Sait
    Aiman El-Maleh
    Mohammad Altakrouri
    Ahmad Shawahna
    The Journal of Supercomputing, 2023, 79 : 4493 - 4533
  • [6] Optimization of FPGA-based CNN accelerators using metaheuristics
    Sait, Sadiq M.
    El-Maleh, Aiman
    Altakrouri, Mohammad
    Shawahna, Ahmad
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (04): : 4493 - 4533
  • [7] CNN Oriented Fast CU Partition Decision and PU Mode Decision for HEVC Intra Encoding
    Chen, Ke
    Zeng, Xiaoyang
    Fan, Yibo
    2018 14TH IEEE INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT), 2018, : 864 - 866
  • [8] A CNN-Based Optimal CTU λ Decision for HEVC Intra Rate Control
    Wei, Lili
    Yang, Zhenglong
    Wang, Zhenming
    Wang, Guozhong
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2021, E104D (10) : 1766 - 1769
  • [9] Using CNN for Encoder Optimization in H.265/HEVC
    Xie, Ying
    Yang, Ming
    Yu, Jian
    Jiang, Wenchan
    Hao, Luguo
    10TH EAI INTERNATIONAL CONFERENCE ON MOBILE MULTIMEDIA COMMUNICATIONS (MOBIMEDIA 2017), 2017, : 182 - 186
  • [10] CNN BASED CU PARTITION MODE DECISION ALGORITHM FOR HEVC INTER CODING
    Li, Yunpeng
    Liu, Zhenyu
    Ji, Xiangyang
    Wang, Dongsheng
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 993 - 997