Local Parameter Identifiability: Case of Discrete Infinite-Dimensional Parameter

被引:0
|
作者
Pilyugin, S. Yu. [1 ]
Shalgin, V. S. [1 ]
机构
[1] St Petersburg State Univ, Univ Skaya Nab 7-9, St Petersburg 199034, Russia
基金
俄罗斯科学基金会;
关键词
Dynamical system; Local parameter identifiability; Diffeomorphism; Hyperbolic set;
D O I
10.1007/s10883-024-09699-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the problem of local parameter identifiability for discrete dynamical systems with discrete infinite-dimensional parameter. Our results are related to the so-called conditional local parameter identifiability. In this case, one introduces a special class P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{P}$$\end{document} of possible perturbations of the selected parameter P0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P<^>0$$\end{document} and finds conditions on observations of trajectories under which all parameters P is an element of P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\in \mathcal{P}$$\end{document} close to P0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P<^>0$$\end{document} coincide with P0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P<^>0$$\end{document}. We consider discrete dynamical systems for which the trajectories are observed at points k=1,2,& ctdot;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=1,2,\dots $$\end{document} or at a countable set of points 0<t1<t2<& ctdot;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<t_1<t_2<\dots $$\end{document}. The case of a linearly perturbed diffeomorphism in a neighborhood of a hyperbolic set is also considered.
引用
收藏
页数:9
相关论文
共 50 条