Algorithm of automatic identification of diabetic retinopathy foci based on ultra-widefield scanning laser ophthalmoscopy

被引:1
|
作者
Wang, Jie [1 ]
Wang, Su-Zhen [2 ]
Qin, Xiao-Lin [1 ]
Chen, Meng [1 ]
Zhang, Heng-Ming [3 ]
Liu, Xin [1 ]
Xiang, Meng-Jun [1 ]
Hu, Jian-Bin [4 ]
Huang, Hai-Yu [3 ]
Lan, Chang-Jun [1 ]
机构
[1] Aier Eye Hosp East Chengdu, Chengdu 610051, Sichuan, Peoples R China
[2] Chengdu First Peoples Hosp, Dept Ophthalmol, Chengdu 610095, Sichuan, Peoples R China
[3] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 610097, Sichuan, Peoples R China
[4] Chengdu Aier Eye Hosp, Chengdu 610041, Sichuan, Peoples R China
关键词
diabetic retinopathy; ultra-widefield scanning laser ophthalmoscopy; intelligent diagnosis system; NETWORK;
D O I
10.18240/ijo.2024.04.02
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
center dot AIM: To propose an algorithm for automatic detection of diabetic retinopathy (DR) lesions based on ultra-widefield scanning laser ophthalmoscopy (SLO). center dot METHODS: The algorithm utilized the FasterRCNN (Faster Regions with CNN features)+ResNet50 (Residua Network 50)+FPN (Feature Pyramid Networks) method for detecting hemorrhagic spots, cotton wool spots, exudates, and microaneurysms in DR ultra-widefield SLO. Subimage segmentation combined with a deeper residual network FasterRCNN+ResNet50 was employed for feature extraction to enhance intelligent learning rate. Feature fusion was carried out by the feature pyramid network FPN, which significantly improved lesion detection rates in SLO fundus images. center dot RESULTS: By analyzing 1076 ultra-widefield SLO images provided by our hospital, with a resolution of 2600x2048 dpi, the accuracy rates for hemorrhagic spots, cotton wool spots, exudates, and microaneurysms were found to be 87.23%, 83.57%, 86.75%, and 54.94%, respectively. 610 center dot CONCLUSION: The proposed algorithm demonstrates intelligent detection of DR lesions in ultra-widefield SLO, providing significant advantages over traditional fundus color imaging intelligent diagnosis algorithms.
引用
收藏
页码:610 / 615
页数:6
相关论文
共 50 条
  • [1] Nonmydriatic screening for diabetic retinopathy by ultra-widefield scanning laser ophthalmoscopy (Optomap)
    Aljoscha S. Neubauer
    Marcus Kernt
    Christos Haritoglou
    Siegfried G. Priglinger
    Anselm Kampik
    Michael W. Ulbig
    Graefe's Archive for Clinical and Experimental Ophthalmology, 2008, 246 : 229 - 235
  • [2] Nonmydriatic screening for diabetic retinopathy by ultra-widefield scanning laser ophthalmoscopy (Optomap)
    Neubauer, Aljoscha S.
    Kernt, Marcus
    Haritoglou, Christos
    Priglinger, Siegfried G.
    Kampik, Anselm
    Ulbig, Michael W.
    GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2008, 246 (02) : 229 - 235
  • [3] NONCONFOCAL ULTRA-WIDEFIELD SCANNING LASER OPHTHALMOSCOPY Polarization Artifacts and Diabetic Macular Edema
    Ajlan, Radwan S.
    Barnard, Luke R.
    Mainster, Martin A.
    RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2020, 40 (07): : 1374 - 1378
  • [4] Diabetic Retinopathy. Comparison of the diagnostic features of ultra-widefield scanning laser ophthalmoscopy Optomap with ETDRS 7-field fundus photography
    Kernt, M.
    Pinter, F.
    Hadi, I.
    Hirneiss, C.
    Haritoglou, C.
    Kampik, A.
    Ulbig, M. W.
    Neubauer, A. S.
    OPHTHALMOLOGE, 2011, 108 (02): : 117 - +
  • [5] Assessment of Diabetic Retinopathy Using Nonmydriatic Ultra-Widefield Scanning Laser Ophthalmoscopy (Optomap) Compared With ETDRS 7-Field Stereo Photography
    Kernt, Marcus
    Hadi, Indrawati
    Pinter, Florian
    Seidensticker, Florian
    Hirneiss, Christoph
    Haritoglou, Christos
    Kampik, Anselm
    Ulbig, Michael W.
    Neubauer, Aljoscha S.
    DIABETES CARE, 2012, 35 (12) : 2459 - 2463
  • [6] A Graph Cut Approach to Artery/Vein Classification in Ultra-Widefield Scanning Laser Ophthalmoscopy
    Pellegrini, Enrico
    Robertson, Gavin
    MacGillivray, Tom
    van Hemert, Jano
    Houston, Graeme
    Trucco, Emanuele
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (02) : 516 - 526
  • [7] Deep learning for automatic diabetic retinopathy grading of ultra-widefield fundus images
    Sarhan, Mhd Hasan
    Sha, Patricia
    Chen, Mike
    Durbin, Mary K.
    Yigitsoy, Mehmet
    Eslami, Abouzar
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [8] Detection of Diabetic Retinopathy from Ultra-Widefield Scanning Laser Ophthalmoscope Images: A Multicenter Deep Learning Analysis
    Tang, Fangyao
    Luenam, Phoomraphee
    Ran, An Ran
    Quadeer, Ahmed Abdul
    Raman, Rajiv
    Sen, Piyali
    Khan, Rehana
    Giridhar, Anantharaman
    Haridas, Swathy
    Iglicki, Matias
    Zur, Dinah
    Loewenstein, Anat
    Negri, Hermino P.
    Szeto, Simon
    Lam, Bryce Ka Yau
    Tham, Clement C.
    Sivaprasad, Sobha
    Mckay, Matthew
    Cheung, Carol Y.
    OPHTHALMOLOGY RETINA, 2021, 5 (11): : 1097 - 1106
  • [9] Performance of two ultra-widefield retinal imaging systems for the automatic diagnosis of diabetic retinopathy
    El Habib Daho, Mostafa
    Zeghlache, Rachid
    Li, Yihao
    Le Boite, Hugo
    Bonnin, Sophie
    Magazzeni, Stephanie
    Borderie, Laurent
    Lay, Bruno
    Tadayoni, Ramin
    Cochener, Beatrice
    Conze, Pierre-henri
    Lamard, Mathieu
    Quellec, Gwenole
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [10] A review of concentric macular rings seen on scanning laser ophthalmoscopy ultra-widefield pseudocolour reflectance images
    De Silva, Isuru Godakandage Isuru Ravihansa
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2022, 63 (07)