Footstep detection in urban seismic data with a convolutional neural network

被引:26
|
作者
Jakkampudi S. [1 ]
Shen J. [2 ]
Li W. [1 ,3 ]
Dev A. [1 ]
Zhu T. [2 ]
Martin E.R. [1 ]
机构
[1] Virginia Tech, Blacksburg, VA
[2] Pennsylvania State University, State College, PA
[3] Northeastern University, Boston, MA
来源
Martin, Eileen R. (eileenrmartin@vt.edu) | 2020年 / Society of Exploration Geophysicists卷 / 39期
关键词
Convolution;
D O I
10.1190/tle39090654.1
中图分类号
学科分类号
摘要
Seismic data for studying the near surface have historically been extremely sparse in cities, limiting our ability to understand small-scale processes, locate small-scale geohazards, and develop earthquake hazard microzonation at the scale of buildings. In recent years, distributed acoustic sensing (DAS) technology has enabled the use of existing underground telecommunications fibers as dense seismic arrays, requiring little manual labor or energy to maintain. At the Fiber-Optic foR Environmental SEnsEing array under Pennsylvania State University, we detected weak slow-moving signals in pedestrian-only areas of campus. These signals were clear in the 1 to 5 Hz range. We verified that they were caused by footsteps. As part of a broader scheme to remove and obscure these footsteps in the data, we developed a convolutional neural network to detect them automatically. We created a data set of more than 4000 windows of data labeled with or without footsteps for this development process. We describe improvements to the data input and architecture, leading to approximately 84% accuracy on the test data. Performance of the network was better for individual walkers and worse when there were multiple walkers. We believe the privacy concerns of individual walkers are likely to be highest priority. Community buy-in will be required for these technologies to be deployed at a larger scale. Hence, we should continue to proactively develop the tools to ensure city residents are comfortable with all geophysical data that may be acquired. © 2020 Society of Exploration Geophysicists. All rights reserved.
引用
收藏
页码:654 / 660
页数:6
相关论文
共 50 条
  • [1] Seismic fault detection with convolutional neural network
    Xiong, Wei
    Ji, Xu
    Ma, Yue
    Wang, Yuxiang
    AlBinHassan, Nasher M.
    Ali, Mustafa N.
    Luo, Yi
    GEOPHYSICS, 2018, 83 (05) : O97 - O103
  • [2] A convolutional neural network approach to deblending seismic data
    Sun, Jing
    Slang, Sigmund
    Elboth, Thomas
    Greiner, Thomas Larsen
    McDonald, Steven
    Gelius, Leiv-J
    GEOPHYSICS, 2020, 85 (04) : WA13 - WA26
  • [3] SEISMIC DATA ENHANCEMENT BASED ON BAYESIAN CONVOLUTIONAL NEURAL NETWORK
    Qiao, Zixuan
    Chuai, Xiaoyu
    Xu, Zhenwang
    Guo, Naichuan
    Zhu, Wei
    Zhang, Jinfeng
    Chen, Wei
    Xia, Rui
    JOURNAL OF SEISMIC EXPLORATION, 2023, 32 (05): : 425 - 425
  • [4] Quality control of seismic data based on convolutional neural network
    Lee, Seoahn
    Sheen, Dong-Hoon
    JOURNAL OF THE GEOLOGICAL SOCIETY OF KOREA, 2021, 57 (03) : 329 - 338
  • [5] FootsNet: A Convolutional Neural Network for Footstep-based Person Identification
    Anchal, Sahil
    Mukhopadhyay, Bodhibrata
    Kar, Subrat
    2022 IEEE SENSORS, 2022,
  • [6] Fault detection in seismic data using graph convolutional network
    Patitapaban Palo
    Aurobinda Routray
    Rahul Mahadik
    Sanjai Singh
    The Journal of Supercomputing, 2023, 79 : 12737 - 12765
  • [7] Fault detection in seismic data using graph convolutional network
    Palo, Patitapaban
    Routray, Aurobinda
    Mahadik, Rahul
    Singh, Sanjai
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (11): : 12737 - 12765
  • [8] Sparse Seismic Data Reconstruction Based on a Convolutional Neural Network Algorithm
    Xinwei Hou
    Siyou Tong
    Zhongcheng Wang
    Xiugang Xu
    Yin Peng
    Kai Wang
    Journal of Ocean University of China, 2023, 22 : 410 - 418
  • [9] Multigranularity Feature Fusion Convolutional Neural Network for Seismic Data Denoising
    Feng, Jun
    Li, Xiaoqin
    Liu, Xi
    Chen, Chaoxian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] Sparse Seismic Data Reconstruction Based on a Convolutional Neural Network Algorithm
    Hou, Xinwei
    Tong, Siyou
    Wang, Zhongcheng
    Xu, Xiugang
    Peng, Yin
    Wang, Kai
    JOURNAL OF OCEAN UNIVERSITY OF CHINA, 2023, 22 (02) : 410 - 418