Effect of Service Environment of Proton Exchange Membrane Fuel Cell on the Corrosion Behaviors of TA1

被引:0
|
作者
Jia L. [1 ]
Yang D. [1 ]
Ming P. [1 ]
Min J. [2 ]
Leng Y. [3 ]
机构
[1] School of Automotive Studies, Tongji University, Shanghai
[2] School of Mechanical Engineering, Tongji University, Shanghai
[3] United Chemical Reaction Engineering Research Institute, Changzhou University Branch, Changzhou University, Changzhou
基金
中国国家自然科学基金;
关键词
Corrosion; Metal bipolar plate; Proton exchange membrane fuel cell; Titanium;
D O I
10.7503/cjcu20230421
中图分类号
学科分类号
摘要
In this study,TA1 was selected as the experimental material to investigate the impacts of operating environment(temperatures,pH,gas atmospheres)and operating conditions(potentials and test duration)on its corrosion behavior using the techniques such as potentiodynamic,potentiostatic,electrochemical impedance spectroscopy(EIS),and working conditions tests. The surface morphology and properties of the TA1 under different durations of working condition test were analyzed by optical microscopy(OM),energy dispersive X-ray spectroscopy (EDX),X-ray photoelectron spectroscopy(XPS),interfacial contact resistance(ICR),contact angle,and surface roughness measurement techniques. The results show that the operating environment and operating conditions all impact the corrosion resistance of TA1. After working conditions tests of 10 h,the accumulated oxide layer on the surface of TA1 improves its corrosion resistance,decreasing corrosion current density from 2.62 μA/cm2 to 0.94 μA/cm2. Whereas the conductivity and hydrophobicity of TA1 are significantly reduced,as evidenced by the increase in interfacial contact resistance(ICR) value from 31.75 mΩ·cm2 to 333.17 mΩ·cm2 compared to commercially available carbon paper and the decrease in contact angle from 86.28° to 68.04°. © 2024 Higher Education Press Limited Company. All rights reserved.
引用
收藏
相关论文
共 28 条
  • [1] Filippov S. P., Yaroslavtsev A. B., Russ. Chem. Rev, 90, 6, pp. 627-643, (2021)
  • [2] Wang Y, Diaz D. F. R., Chen K. S., Adroher X. C., Materials today, 32, pp. 178-203, (2020)
  • [3] Fan L. H., Wang H. Z., Hou Z. J., Huo S., Brandon N. P., Yin Y, Guiver M. D., Nature, 595, 7867, pp. 361-369, (2021)
  • [4] J. Power Sources, 399, pp. 304-313, (2018)
  • [5] Zhang C. B., Liang X, Luo F, Cheng R., Gong F., J. Materials Processing Tech, 262, pp. 32-40, (2018)
  • [6] Leng Y, Ming P. W, Yang D. J, Zhang C. M., J. Power Sources, 451, (2020)
  • [7] Orsi A, Kongstein O. E., Hamilton P. J, Oedegaard A, Svenum I. H., Cooke K., J. Power Sources, 285, pp. 530-537, (2015)
  • [8] Asri N. F., Husaini T., Sulong A. B, Majlan E. H., Daud W. R. W., Int. J. Hydrogen Energy, 42, 14, pp. 9135-9148, (2016)
  • [9] Stein T., Energy Tech, 8, 6, (2020)
  • [10] Leng Y, Zhang C. M., 10, (2021)