On a class of evolution problems driven by maximal monotone operators with integral perturbation

被引:0
|
作者
Fennour, Fatima [1 ]
Saidi, Soumia [1 ]
机构
[1] Univ Jijel, Fac Exact Sci & Informat, Dept Math, LMPA Lab, Jijel 18000, Algeria
来源
CUBO-A MATHEMATICAL JOURNAL | 2024年 / 26卷 / 01期
关键词
Integro-differential inclusion; maximal monotone operator; integral perturbation; opti- mal solution; PRINCIPLE;
D O I
10.56754/0719-0646.2601.123
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper is dedicated to the study of a first -order differential inclusion driven by time and state -dependent maximal monotone operators with integral perturbation, in the context of Hilbert spaces. Based on a fixed point method, we derive a new existence theorem for this class of differential inclusions. Then, we investigate an optimal control problem subject to such a class, by considering control maps acting in the state of the operators and the integral perturbation.
引用
收藏
页码:123 / 151
页数:29
相关论文
共 50 条
  • [1] LIPSCHITZ PERTURBATION TO EVOLUTION INCLUSION DRIVEN BY TIME-DEPENDENT MAXIMAL MONOTONE OPERATORS
    Castaing, Charles
    Saidi, Soumia
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2021, 58 (02) : 677 - 712
  • [2] Truncated Perturbation to Evolution Problems Involving Time-Dependent Maximal Monotone Operators
    Boudjerida, Nouha
    Affane, Doria
    Yarou, Mustapha Fateh
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (02) : 621 - 635
  • [3] MULTI-VALUED PERTURBATION TO EVOLUTION PROBLEMS INVOLVING TIME DEPENDENT MAXIMAL MONOTONE OPERATORS
    Azzam-Laouir, Dalila
    Belhoula, Warda
    Castaing, Charles
    Monteiro Marques, M. D. P.
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2020, 9 (01): : 219 - 254
  • [4] Viscosity Results for a Class of Evolution Inclusions with Maximal Monotone Operators
    Saidi, Soumia
    Yarou, Mustapha Fateh
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2018, 39 (05) : 623 - 641
  • [5] Maximal monotone operators and maximal monotone functions for equilibrium problems
    Aoyama, Koji
    Kimura, Yasunori
    Takahashi, Wataru
    [J]. JOURNAL OF CONVEX ANALYSIS, 2008, 15 (02) : 395 - 409
  • [6] Evolution problems involving state-dependent maximal monotone operators
    Selamnia, Fatiha
    Azzarn-Laouir, Dalila
    Monteiro Marques, Manuel D. P.
    [J]. APPLICABLE ANALYSIS, 2022, 101 (01) : 297 - 313
  • [7] COUPLED PROBLEMS DRIVEN BY TIME AND STATE-DEPENDENT MAXIMAL MONOTONE OPERATORS
    Saidi, Soumia
    [J]. NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2024, 14 (03): : 547 - 580
  • [8] A New Old Class of Maximal Monotone Operators
    Alves, M. Marques
    Svaiter, B. F.
    [J]. JOURNAL OF CONVEX ANALYSIS, 2009, 16 (3-4) : 881 - 890
  • [9] Implicit eigenvalue problems for maximal monotone operators
    Kim, In-Sook
    [J]. FIXED POINT THEORY AND APPLICATIONS, 2012,
  • [10] Implicit eigenvalue problems for maximal monotone operators
    In-Sook Kim
    [J]. Fixed Point Theory and Applications, 2012