Image-Based Malware Classification Method with the AlexNet Convolutional Neural Network Model

被引:0
|
作者
Zhao Z. [1 ]
Zhao D. [1 ]
Yang S. [1 ]
Xu L. [1 ,2 ]
机构
[1] Shandong Provincial Key Laboratory of Computer Networks, Shandong Computer Science Center, National Supercomputer Center in Jinan, Qilu University of Technology, Shandong Academy of Sciences, Jinan
[2] School of Computer Science and Technology, Harbin Institute of Technology, Weihai
关键词
All Open Access; Gold;
D O I
10.1155/2023/6390023
中图分类号
学科分类号
摘要
In recent years, malware has experienced explosive growth and has become one of the most severe security threats. However, feature engineering easily restricts the traditional machine learning methods-based malware classification and is hard to deal with massive malware. At the same time, the dynamic analysis methods have the problems of complex operation and high cost, which are not suitable for efficiently classifying large quantities of malware. Therefore, we propose a novel static malware detection method based on this study's AlexNet convolutional neural network (CNN). Unlike existing solutions, we convert all malware bytes into color images, propose an improved AlexNet architecture, and solve the unbalanced datasets with the data enhancement method. Extensive experiments are performed using the Microsoft malware dataset and the Google Code Jam (GCJ) dataset. The experimental results show that the accuracy of the Microsoft malware dataset reaches 99.99%, and the GCJ dataset reaches 99.38%. We also verify that our method can better extract the texture features of malware and improve the accuracy and detection efficiency. © 2023 Zilin Zhao et al.
引用
收藏
相关论文
共 50 条
  • [1] Image-Based Malware Classification Using Convolutional Neural Network
    Kim, Hae-Jung
    ADVANCES IN COMPUTER SCIENCE AND UBIQUITOUS COMPUTING, 2018, 474 : 1352 - 1357
  • [2] Generative Adversarial Network for Global Image-Based Local Image to Improve Malware Classification Using Convolutional Neural Network
    Jang, Sejun
    Li, Shuyu
    Sung, Yunsick
    APPLIED SCIENCES-BASEL, 2020, 10 (21): : 1 - 14
  • [3] Image-based malware representation approach with EfficientNet convolutional neural networks for effective malware classification
    Chaganti, Rajasekhar
    Ravi, Vinayakumar
    Pham, Tuan D.
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2022, 69
  • [4] Enhanced Image-Based Malware Classification Using Snake Optimization Algorithm With Deep Convolutional Neural Network
    Duraibi, Salahaldeen
    IEEE ACCESS, 2024, 12 : 95047 - 95057
  • [5] IMCFN: Image-based malware classification using fine-tuned convolutional neural network architecture
    Vasan, Danish
    Alazab, Mamoun
    Wassan, Sobia
    Naeem, Hamad
    Safaei, Babak
    Zheng, Qin
    COMPUTER NETWORKS, 2020, 171 (171)
  • [6] IMCLNet: A lightweight deep neural network for Image-based Malware Classification
    Zou, Binghui
    Cao, Chunjie
    Tao, Fangjian
    Wang, Longjuan
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2022, 70
  • [7] Neural Network Innovations in Image-Based Malware Classification: A Comparative Study
    Al-Qadasi, Hamzah
    Benchadi, Djafer Yahia M.
    Chehida, Salim
    Fukui, Kazuhiro
    Bensalem, Saddek
    ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 4, AINA 2024, 2024, 202 : 252 - 265
  • [8] A novel malware classification and augmentation model based on convolutional neural network
    Tekerek, Adem
    Yapici, Muhammed Mutlu
    COMPUTERS & SECURITY, 2022, 112
  • [9] Classification of Ceramics Based on Improved AlexNet Convolutional Neural Network
    Li, Jiapeng
    Huang, Hua
    Hu, Fengtao
    Ou, Yangding
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 537 - 544
  • [10] A method of image classification based on convolutional neural network
    Dong, Zhe
    Jiang, Mingyang
    Pei, Zhili
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2018, 124 : 47 - 48