RE: "PRACTICAL GUIDE TO HONEST CAUSAL FORESTS FOR IDENTIFYING HETEROGENEOUS TREATMENT EFFECTS"

被引:1
|
作者
Jakobsen, Kim Daniel [1 ]
机构
[1] Statens SerumInst, Dept Epidemiol Res, DK-2300 Copenhagen, Denmark
关键词
D O I
10.1093/aje/kwad147
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
引用
收藏
页码:811 / 812
页数:2
相关论文
共 49 条
  • [1] Practical Guide to Honest Causal Forests for Identifying Heterogeneous Treatment Effects
    Jawadekar, Neal
    Kezios, Katrina
    Odden, Michelle C.
    Stingone, Jeanette A.
    Calonico, Sebastian
    Rudolph, Kara
    Al Hazzouri, Adina Zeki
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2023, 192 (07) : 1155 - 1165
  • [2] Shrinkage Bayesian Causal Forests for Heterogeneous Treatment Effects Estimation
    Caron, Alberto
    Baio, Gianluca
    Manolopoulou, Ioanna
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2022, 31 (04) : 1202 - 1214
  • [3] Observing Personalizations in Learning: Identifying Heterogeneous Treatment Effects Using Causal Trees
    Yin, Biao
    Patikorn, Thanaporn
    Botelho, Anthony F.
    Heffernan, Neil T.
    PROCEEDINGS OF THE FOURTH (2017) ACM CONFERENCE ON LEARNING @ SCALE (L@S'17), 2017, : 299 - 302
  • [4] Estimating heterogeneous treatment effects with right-censored data via causal survival forests
    Cui, Yifan
    Kosorok, Michael R.
    Sverdrup, Erik
    Wager, Stefan
    Zhu, Ruoqing
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2023, 85 (02) : 179 - 211
  • [5] Application of causal forests to randomised controlled trial data to identify heterogeneous treatment effects: a case study
    Eleanor Van Vogt
    Anthony C. Gordon
    Karla Diaz-Ordaz
    Suzie Cro
    BMC Medical Research Methodology, 25 (1)
  • [6] Causal Network Motifs: Identifying Heterogeneous Spillover Effects in A/B Tests
    Yuan, Yuan
    Altenburger, Kristen
    Kooti, Farshad
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 3359 - 3370
  • [7] A practical guide to re-treatment of gold processing residues
    Muir, A
    Mitchell, J
    Flatman, SR
    Sabbagha, C
    MINERALS ENGINEERING, 2005, 18 (08) : 811 - 824
  • [8] Mining heterogeneous causal effects for personalized cancer treatment
    Zhang, Weijia
    Thuc Duy Le
    Liu, Lin
    Zhou, Zhi-Hua
    Li, Jiuyong
    BIOINFORMATICS, 2017, 33 (15) : 2372 - 2378
  • [9] Wasserstein Random Forests and Applications in Heterogeneous Treatment Effects
    Du, Q.
    Biau, G.
    Peti, F.
    Porcher, R.
    24TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS (AISTATS), 2021, 130
  • [10] Generalizability of heterogeneous treatment effects based on causal forests applied to two randomized clinical trials of intensive glycemic control
    Raghavan, Sridharan
    Josey, Kevin
    Bahn, Gideon
    Reda, Domenic
    Basu, Sanjay
    Berkowitz, Seth A.
    Emanuele, Nicholas
    Reaven, Peter
    Ghosh, Debashis
    ANNALS OF EPIDEMIOLOGY, 2022, 65 : 101 - 108