Label-Guided Knowledge Distillation for Continual Semantic Segmentation on 2D Images and 3D Point Clouds

被引:0
|
作者
Yang, Ze [1 ]
Li, Ruibo [1 ]
Ling, Evan [2 ]
Zhang, Chi [1 ]
Wang, Yiming [1 ]
Huang, Dezhao [2 ]
Ma, Keng Teck [2 ]
Hur, Minhoe [3 ]
Lin, Guosheng [1 ]
机构
[1] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[2] Hyundai Motor Grp Innovat Ctr Singapore HMGICS, Singapore, Singapore
[3] Hyundai Motor Grp, AIRS Co, Singapore, Singapore
关键词
D O I
10.1109/ICCV51070.2023.01705
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Continual semantic segmentation (CSS) aims to extend an existing model to tackle unseen tasks while retaining its old knowledge. Naively fine-tuning the old model on new data leads to catastrophic forgetting. A common solution is knowledge distillation (KD), where the output distribution of the new model is regularized to be similar to that of the old model. However, in CSS, this is challenging because of the background shift issue. Existing KD-based CSS methods continue to suffer from confusion between the background and novel classes since they fail to establish a reliable class correspondence for distillation. To address this issue, we propose a new label-guided knowledge distillation (LGKD) loss, where the old model output is expanded and transplanted (with the guidance of the ground truth label) to form a semantically appropriate class correspondence with the new model output. Consequently, the useful knowledge from the old model can be effectively distilled into the new model without causing confusion. We conduct extensive experiments on two prevailing CSS benchmarks, Pascal-VOC and ADE20K, where our LGKD significantly boosts the performance of three competing methods, especially on novel mIoU by up to +76%, setting new state-of-the-art. Finally, to further demonstrate its generalization ability, we introduce the first CSS benchmark for 3D point cloud based on ScanNet, along with several re-implemented baselines for comparison. Experiments show that LGKD is versatile in both 2D and 3D modalities without requiring ad hoc design. Codes are available at https://github.com/Ze-Yang/LGKD.
引用
收藏
页码:18555 / 18566
页数:12
相关论文
共 50 条
  • [1] 2D TO 3D LABEL PROPAGATION FOR THE SEMANTIC SEGMENTATION OF HERITAGE BUILDING POINT CLOUDS
    Pellis, E.
    Murtiyoso, A.
    Masiero, A.
    Tucci, G.
    Betti, M.
    Grussenmeyer, P.
    [J]. XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION II, 2022, 43-B2 : 861 - 867
  • [2] SEMANTIC ENRICHMENT OF 3D POINT CLOUDS USING 2D IMAGE SEGMENTATION
    Rai, A.
    Srivastava, N.
    Khoshelham, K.
    Jain, K.
    [J]. GEOSPATIAL WEEK 2023, VOL. 48-1, 2023, : 1659 - 1666
  • [3] SEGCloud: Semantic Segmentation of 3D Point Clouds
    Tchapmi, Lyne P.
    Choy, Christopher B.
    Armeni, Iro
    Gwak, JunYoung
    Savarese, Silvio
    [J]. PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2017, : 537 - 547
  • [4] Point attention network for semantic segmentation of 3D point clouds
    Feng, Mingtao
    Zhang, Liang
    Lin, Xuefei
    Gilani, Syed Zulqarnain
    Mian, Ajmal
    [J]. PATTERN RECOGNITION, 2020, 107
  • [5] GrowSP: Unsupervised Semantic Segmentation of 3D Point Clouds
    Zhang, Zihui
    Yang, Bo
    Wang, Bing
    Li, Bo
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 17619 - 17629
  • [6] Superpoint-guided Semi-supervised Semantic Segmentation of 3D Point Clouds
    Deng, Shuang
    Dong, Qiulei
    Liu, Bo
    Hu, Zhanyi
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 9214 - 9220
  • [7] 3D-MiniNet: Learning a 2D Representation From Point Clouds for Fast and Efficient 3D LIDAR Semantic Segmentation
    Alonso, Inigo
    Riazuelo, Luis
    Montesano, Luis
    Murillo, Ana C.
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) : 5432 - 5439
  • [8] Semantic 3D Reconstruction with Learning MVS and 2D Segmentation of Aerial Images
    Wei, Zizhuang
    Wang, Yao
    Yi, Hongwei
    Chen, Yisong
    Wang, Guoping
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (04):
  • [9] Texture Mapping of 3D Point Clouds with Freely Recorded 2D Images
    Xiang Zhuolong
    Zhang Qican
    Chen Chaowen
    [J]. LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (18)
  • [10] Exploring Spatial Context for 3D Semantic Segmentation of Point Clouds
    Engelmann, Francis
    Kontogianni, Theodora
    Hermans, Alexander
    Leibe, Bastian
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 716 - 724