A Comprehensive Review of Healthcare Prediction using Data Science with Deep Learning

被引:0
|
作者
Thandu, Asha Latha [1 ]
Gera, Pradeepini [1 ]
机构
[1] Koneru Lakshmaiah Educ Fdn, Dept Comp Sci & Engn, Vaddeswaram 500302, Andhra Pradesh, India
关键词
Data science; deep belief network; healthcare; sparse auto encoder; deep learning; BIG DATA ANALYTICS; DIAGNOSIS;
D O I
10.14569/IJACSA.2023.0141268
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Data science in healthcare prediction technology can identify diseases and spot even the smallest changes in the patient's health factors and prevent the diseases. Several factors make data science crucial to healthcare today the most important among them is the competitive demand for valuable information in the healthcare systems. The data science technology along with Deep Learning (DL) techniques creates medical records, disease diagnosis, and especially, real-time monitoring of patients. Each DL algorithm performs differently using different datasets. The impacts on different predictive results may be affects overall results. The variability of prognostic results is large in the clinical decision -making process. Consequently, it is necessary to understand the several DL algorithms required for handling big amount of data in healthcare sector. Therefore, this review paper highlights the basic DL algorithms used for prediction, classification and explains how they are used in the healthcare sector. The goal of this review is to provide a clear overview of data science technologies in healthcare solutions. The analysis determines that each DL algorithm have several negativities. The optimal method is necessary for critical healthcare prediction data. This review also offers several examples of data science and DL to diagnose upcoming trends on the healthcare system.
引用
收藏
页码:657 / 669
页数:13
相关论文
共 50 条
  • [1] Data Science in Economics: Comprehensive Review of Advanced Machine Learning and Deep Learning Methods
    Nosratabadi, Saeed
    Mosavi, Amirhosein
    Puhong Duan
    Ghamisi, Pedram
    Filip, Ferdinand
    Band, Shahab S.
    Reuter, Uwe
    Gama, Joao
    Gandomi, Amir H.
    MATHEMATICS, 2020, 8 (10) : 1 - 25
  • [2] Blockchain-based deep learning in IoT, healthcare and cryptocurrency price prediction: a comprehensive review
    Arora, Shefali
    Mittal, Ruchi
    Shrivastava, Avinash K.
    Bali, Shivani
    INTERNATIONAL JOURNAL OF QUALITY & RELIABILITY MANAGEMENT, 2024, 41 (08) : 2199 - 2225
  • [3] A Comprehensive Review on Heart Disease Risk Prediction using Machine Learning and Deep Learning Algorithms
    Vishnu Vardhana Reddy Karna
    Viswavardhan Reddy Karna
    Varaprasad Janamala
    V. N. Koteswara Rao Devana
    V. Ravi Sankar Ch
    Aravinda Babu Tummala
    Archives of Computational Methods in Engineering, 2025, 32 (3) : 1763 - 1795
  • [4] Deep Learning for Alzheimer's Disease Prediction: A Comprehensive Review
    Malik, Isra
    Iqbal, Ahmed
    Gu, Yeong Hyeon
    Al-antari, Mugahed A.
    DIAGNOSTICS, 2024, 14 (12)
  • [5] A Comprehensive Review on Deep Learning Algorithms for Wind Power Prediction
    Sharma, Geetika
    Lal, Madan
    Attwal, Kanwal Preet Singh
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2022, 13 (04): : 829 - 850
  • [6] Deep Learning for Radiotherapy Outcome Prediction Using Dose Data-A Review
    Appelt, A. L.
    Elhaminia, B.
    Gooya, A.
    Gilbert, A.
    Nix, M.
    CLINICAL ONCOLOGY, 2022, 34 (02) : E87 - E96
  • [7] Time Series Prediction Using Deep Learning Methods in Healthcare
    Morid, Mohammad Amin
    Sheng, Olivia R. Liu
    Dunbar, Joseph
    ACM TRANSACTIONS ON MANAGEMENT INFORMATION SYSTEMS, 2023, 14 (01)
  • [8] A Comprehensive Review on Deep Learning-Based Data Fusion
    Hussain, Mazhar
    O'Nils, Mattias
    Lundgren, Jan
    Mousavirad, Seyed Jalaleddin
    IEEE Access, 2024, 12 : 180093 - 180124
  • [9] Protein-protein interaction prediction with deep learning: A comprehensive review
    Soleymani, Farzan
    Paquet, Eric
    Viktor, Herna
    Michalowski, Wojtek
    Spinello, Davide
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2022, 20 : 5316 - 5341
  • [10] A comprehensive review on multiple hybrid deep learning approaches for stock prediction
    Shah J.
    Vaidya D.
    Shah M.
    Intelligent Systems with Applications, 2022, 16