The Fredholm Alternative with Application to the Derivation of Hilbert Expansion Based Fluid Models for Plasma Edge Modelling

被引:0
|
作者
Maes, Vince [1 ]
Dekeyser, Wouter [2 ]
Koellermeier, Julian [3 ,4 ]
Baelmans, Martine [2 ]
Samaey, Giovanni
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, Celestijnenlaan 200A, B-3001 Leuven, Belgium
[2] Katholieke Univ Leuven, Dept Mech Engn, Celestijnenlaan 200A, B-3001 Leuven, Belgium
[3] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intelli, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
[4] Univ Groningen, Groningen Cognit Syst & Mat Ctr, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
关键词
Fredholm alternative; Hilbert expansion; fluid model; kinetic equation; plasma edge modelling; TRANSPORT;
D O I
10.1063/5.0187449
中图分类号
O414.1 [热力学];
学科分类号
摘要
In the multiscale context of many-particle systems, it is often desired to derive macroscopic fluid models from kinetic equations describing physical phenomena at a mesoscopic level. In nuclear fusion applications, the macroscopic fluid models for describing the neutral particles in the so-called plasma edge are typically based on a phenomenological basis. In this paper, we explore a more rigorous alternative: Hilbert expansion based fluid models. In the derivation of Hilbert expansion based fluid models from linear kinetic equations, the Fredholm alternative gives rise to solvability conditions that result in the desired macroscopic fluid equations. We derive a Hilbert expansion based fluid model in the so-called steady-state scaling of a linear kinetic equation describing neutral particles in the plasma edge, with special attention for the use of the Fredholm alternative, and illustrate the performance of the resulting macroscopic fluid model numerically.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Hilbert expansion based fluid models for kinetic equations describing neutral particles in the plasma edge of a fusion device
    Maes, V.
    Dekeyser, W.
    Koellermeier, J.
    Baelmans, M.
    Samaey, G.
    PHYSICS OF PLASMAS, 2023, 30 (06)
  • [2] Challenges in plasma edge fluid modelling
    Schneider, R.
    Runov, A.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (07) : S87 - S95
  • [3] Assessment of advanced fluid neutral models for the neutral atoms in the plasma edge and application in ITER geometry
    Van Uytven, Wim
    Dekeyser, Wouter
    Blommaert, Maarten
    Carli, Stefano
    Baelmans, Martine
    NUCLEAR FUSION, 2022, 62 (08)
  • [4] Plasma edge fluid models for recycling at near tangential surfaces
    Baelmans, M
    Reiter, D
    Küppers, B
    Börner, P
    JOURNAL OF NUCLEAR MATERIALS, 2001, 290 : 537 - 541
  • [5] Drift-ordered fluid equations for modelling collisional edge plasma
    Simakov, AN
    Catto, PJ
    CONTRIBUTIONS TO PLASMA PHYSICS, 2004, 44 (1-3) : 83 - 94
  • [6] Numerical Fluid Modelling of the Plasma Edge Response to a 3D Object and Application to Mach Probe Measurements
    Paredes, A.
    Serre, E.
    Schwander, F.
    Ghendrih, Ph.
    Tamain, P.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2014, 54 (4-6) : 373 - 377
  • [7] An Alternative Derivation of A Bayes Tracking Filter Based on Finite Mixture Models
    Liu, Weifeng
    Han, Chongzhao
    Lian, Feng
    FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2009, : 842 - 849
  • [8] ELM modelling based on the nonlinear interchange mode in edge plasma
    Takayama, A
    Wakatani, M
    PLASMA PHYSICS AND CONTROLLED FUSION, 1996, 38 (08) : 1411 - 1414
  • [9] Progress in edge plasma turbulence modelling-hierarchy of models from 2D transport application to 3D fluid simulations in realistic tokamak geometry
    Bufferand, H.
    Bucalossi, J.
    Ciraolo, G.
    Falchetto, G.
    Gallo, A.
    Ghendrih, Ph
    Rivals, N.
    Tamain, P.
    Yang, H.
    Giorgiani, G.
    Schwander, F.
    d'Abusco, M. Scotto
    Serre, E.
    Marandet, Y.
    Raghunathan, M.
    NUCLEAR FUSION, 2021, 61 (11)
  • [10] 3D fluid modelling of the edge plasma by means of a Monte Carlo technique
    Feng, Y
    Sardei, F
    Kisslinger, J
    JOURNAL OF NUCLEAR MATERIALS, 1999, 266 : 812 - 818