Nonparametric predictive model for sparse and irregular longitudinal data

被引:0
|
作者
Wang, Shixuan [1 ]
Kim, Seonjin [1 ]
Cho, Hyunkeun Ryan [2 ]
Chang, Won [3 ]
机构
[1] Miami Univ, Dept Stat, Oxford, OH 45056 USA
[2] Univ Iowa, Dept Biostat, Iowa City, IA 52246 USA
[3] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
关键词
distance; kernel estimation; longitudinal data analysis; trajectory prediction; SYSTOLIC BLOOD-PRESSURE; CARDIOVASCULAR RISK; REGRESSION;
D O I
10.1093/biomtc/ujad023
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a kernel-based estimator to predict the mean response trajectory for sparse and irregularly measured longitudinal data. The kernel estimator is constructed by imposing weights based on the subject-wise similarity on L2 metric space between predictor trajectories, where we assume that an analogous fashion in predictor trajectories over time would result in a similar trend in the response trajectory among subjects. In order to deal with the curse of dimensionality caused by the multiple predictors, we propose an appealing multiplicative model with multivariate Gaussian kernels. This model is capable of achieving dimension reduction as well as selecting functional covariates with predictive significance. The asymptotic properties of the proposed nonparametric estimator are investigated under mild regularity conditions. We illustrate the robustness and flexibility of our proposed method via extensive simulation studies and an application to the Framingham Heart Study.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] RKHS-based functional nonparametric regression for sparse and irregular longitudinal data
    Avery, Matthew
    Wu, Yichao
    Helen Zhang, Hao
    Zhang, Jiajia
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2014, 42 (02): : 204 - 216
  • [2] Simultaneous nonparametric regression analysis of sparse longitudinal data
    Cao, Hongyuan
    Liu, Weidong
    Zhou, Zhou
    [J]. BERNOULLI, 2018, 24 (4A) : 3013 - 3038
  • [3] CAUSAL MEDIATION ANALYSIS FOR SPARSE AND IRREGULAR LONGITUDINAL DATA
    Zeng, Shuxi
    Rosenbaum, Stacy
    Alberts, Susan C.
    Archie, Elizabeth A.
    Li, Fan
    [J]. ANNALS OF APPLIED STATISTICS, 2021, 15 (02): : 747 - 767
  • [4] Recovering the underlying trajectory from sparse and irregular longitudinal data
    Nie, Yunlong
    Yang, Yuping
    Wang, Liangliang
    Cao, Jiguo
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (01): : 122 - 141
  • [5] Functional Robust Support Vector Machines for Sparse and Irregular Longitudinal Data
    Wu, Yichao
    Liu, Yufeng
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2013, 22 (02) : 379 - 395
  • [6] Broken Stick Model for Irregular Longitudinal Data
    van Buuren, Stef
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2023, 106 (07): : 1 - 51
  • [7] Handling Sparse Longitudinal Data with Irregular Missing Data - Analysis of Fecal Coliform Bacteria Data
    You, Shuai
    Huang, Xiaolin
    Xing, Li
    Pan, Youlian
    Zhang, Xuekui
    [J]. 2022 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (IEEE CIBCB 2022), 2022, : 320 - 325
  • [8] Efficient Estimation of the Nonparametric Mean and Covariance Functions for Longitudinal and Sparse Functional Data
    Zhou, Ling
    Lin, Huazhen
    Liang, Hua
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2018, 113 (524) : 1550 - 1564
  • [9] Estimation of the nonparametric mean and covariance functions for multivariate longitudinal and sparse functional data
    Xu Tengteng
    Zhang, Riquan
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (18) : 6616 - 6639
  • [10] Bayesian nonparametric latent class model for longitudinal data
    Koo, Wonmo
    Kim, Heeyoung
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (11) : 3381 - 3395