Adaptive stress testing: Finding likely failure events with reinforcement learning

被引:0
|
作者
Lee, Ritchie [1 ]
Mengshoel, Ole J. [2 ]
Saksena, Anshu [3 ]
Gardner, Ryan W. [3 ]
Genin, Daniel [3 ]
Silbermann, Joshua [3 ]
Owen, Michael [4 ]
Kochenderfer, Mykel J. [5 ]
机构
[1] NASA Ames Research Center, Moffett Field,CA,94035, United States
[2] Norwegian University of Science and Technology, Trondheim,NO-7491, Norway
[3] Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd., Baltimore,MD,20723, United States
[4] MIT Lincoln Laboratory, 244 Wood St., Lexington,MA,02421, United States
[5] Stanford University, 496 Lomita Mall, Stanford,CA,94305, United States
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Journal article (JA)
引用
收藏
页码:1165 / 1201
相关论文
共 50 条
  • [1] Adaptive Stress Testing: Finding Likely Failure Events with Reinforcement Learning
    Lee, Ritchie
    Mengshoel, Ole J.
    Saksena, Anshu
    Gardner, Ryan W.
    Genin, Daniel
    Silbermann, Joshua
    Owen, Michael
    Kochenderfer, Mykel J.
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2020, 69 : 1165 - 1201
  • [2] Finding Diverse Failure Scenarios in Autonomous Systems Using Adaptive Stress Testing
    Du, Peter
    Driggs-Campbell, Katherine
    SAE International Journal of Connected and Automated Vehicles, 2019, 2 (04): : 241 - 251
  • [3] ReMAV: Reward Modeling of Autonomous Vehicles for Finding Likely Failure Events
    Sharif, Aizaz
    Marijan, Dusica
    IEEE OPEN JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 5 : 669 - 691
  • [4] Adaptive REST API Testing with Reinforcement Learning
    Kim, Myeongsoo
    Sinha, Saurabh
    Orso, Alessandro
    2023 38TH IEEE/ACM INTERNATIONAL CONFERENCE ON AUTOMATED SOFTWARE ENGINEERING, ASE, 2023, : 446 - 458
  • [5] Safety Validation for Deep Reinforcement Learning Based Aircraft Separation Assurance with Adaptive Stress Testing
    Guo, Wei
    Brittain, Marc
    Wei, Peng
    2023 IEEE/AIAA 42ND DIGITAL AVIONICS SYSTEMS CONFERENCE, DASC, 2023,
  • [6] Computerized Adaptive Testing Method Based on Reinforcement Learning for Series Diagnosis
    Liu Z.
    Wu J.
    Yao F.
    Liu Q.
    Chen E.
    Sha J.
    Wang S.
    Su Y.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2024, 37 (01): : 13 - 26
  • [7] Improving the Item Selection Process with Reinforcement Learning in Computerized Adaptive Testing
    Pian, Yang
    Chen, Penghe
    Lu, Yu
    Song, Guangchen
    Chen, Pengtao
    ARTIFICIAL INTELLIGENCE IN EDUCATION. POSTERS AND LATE BREAKING RESULTS, WORKSHOPS AND TUTORIALS, INDUSTRY AND INNOVATION TRACKS, PRACTITIONERS, DOCTORAL CONSORTIUM AND BLUE SKY, AIED 2023, 2023, 1831 : 230 - 235
  • [8] Finding hidden hierarchy in reinforcement learning
    Poulton, G
    Guo, Y
    Lu, W
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 3, PROCEEDINGS, 2005, 3683 : 554 - 561
  • [9] An adaptive testing item selection strategy via a deep reinforcement learning approach
    Wang, Pujue
    Liu, Hongyun
    Xu, Mingqi
    BEHAVIOR RESEARCH METHODS, 2024, 56 (08) : 8695 - 8714
  • [10] Adaptive Reward Computation in Reinforcement Learning-Based Continuous Integration Testing
    Yang, Yang
    Pan, Chaoyue
    Li, Zheng
    Zhao, Ruilian
    IEEE ACCESS, 2021, 9 : 36674 - 36688