Federated Learning With Dynamic Epoch Adjustment and Collaborative Training in Mobile Edge Computing

被引:10
|
作者
Xiang, Tianao [1 ,2 ]
Bi, Yuanguo [1 ,2 ]
Chen, Xiangyi [1 ,2 ]
Liu, Yuan [3 ]
Wang, Boyang [1 ,2 ]
Shen, Xuemin [4 ]
Wang, Xingwei [1 ,2 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110819, Peoples R China
[2] Minist Educ, Engn Res Ctr Secur Technol, Complex Network Syst, Shenyang 110169, Peoples R China
[3] Guangzhou Univ, Cyberspace Inst Adv Technol, Guangzhou 511442, Peoples R China
[4] Univ Waterloo, Dept Elect & Comp Engn, Waterloo, ON N2L 3G1, Canada
关键词
Epoch adjustment; mobile edge computing; model reliability; federated learning; COMMUNICATION;
D O I
10.1109/TMC.2023.3288392
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a distributed learning paradigm, federated learning (FL) can be applied in mobile edge computing (MEC) to support real-time artificial intelligence by leveraging edge computation resources while preserving data privacy in the end devices. However, the unpredictable wireless connections between end devices and edge servers in MEC (e.g., frequent handovers and unstable wireless channels) may result in the loss of important model parameters, which slows down the FL training process and degrades the quality of the global model. In this paper, we propose an adaptive collaborative federated learning (ACFL) scheme to accelerate the convergence and improve model reliability by mitigating communication-based parameter loss under a three-layer MEC architecture. First, a dynamic epoch adjustment method is proposed to reduce communication rounds by dynamically adjusting the training epochs in end devices. In addition, to accelerate the FL convergence, we present an edge server collaborative training scheme by leveraging a multi-layer computing architecture, where edge servers utilize their maintained data to collaboratively train models with end devices. Finally, extensive simulations are conducted and show that ACFL can efficiently improve model reliability and accelerate the convergence of the FL process in MEC.
引用
收藏
页码:4092 / 4106
页数:15
相关论文
共 50 条
  • [1] On the Design of Federated Learning in the Mobile Edge Computing Systems
    Feng, Chenyuan
    Zhao, Zhongyuan
    Wang, Yidong
    Quek, Tony Q. S.
    Peng, Mugen
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (09) : 5902 - 5916
  • [2] CFLMEC: Cooperative Federated Learning for Mobile Edge Computing
    Wang, Xinghan
    Zhong, Xiaoxiong
    Yang, Yuanyuan
    Yang, Tingting
    Cheng, Nan
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 86 - 91
  • [3] Federated learning framework for mobile edge computing networks
    Fantacci, Romano
    Picano, Benedetta
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2020, 5 (01) : 15 - 21
  • [4] Energy-Efficient Dynamic Asynchronous Federated Learning in Mobile Edge Computing Networks
    Xu, Guozeng
    Li, Xiuhua
    Li, Hui
    Fan, Qilin
    Wang, Xiaofei
    Leung, Victor C. M.
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 160 - 165
  • [5] Federated Learning Assisted Intelligent IoV Mobile Edge Computing
    Quan, Haoyu
    Zhang, Qingmiao
    Zhao, Junhui
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2025, 9 (01): : 228 - 241
  • [6] Multicore Federated Learning for Mobile-Edge Computing Platforms
    Bai, Yang
    Chen, Lixing
    Li, Jianhua
    Wu, Jun
    Zhou, Pan
    Xu, Zichuan
    Xu, Jie
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (07): : 5940 - 5952
  • [7] Decentralized Federated Learning With Intermediate Results in Mobile Edge Computing
    Chen, Suo
    Xu, Yang
    Xu, Hongli
    Jiang, Zhida
    Qiao, Chunming
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (01) : 341 - 358
  • [8] A reliable and fair federated learning mechanism for mobile edge computing
    Huang, Xiaohong
    Han, Lu
    Li, Dandan
    Xie, Kun
    Zhang, Yong
    COMPUTER NETWORKS, 2023, 226
  • [9] Offloading in Mobile Edge Computing Based on Federated Reinforcement Learning
    Dai, Yu
    Xue, Qing
    Gao, Zhen
    Zhang, Qiuhong
    Yang, Lei
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [10] Collaborative Caching in Edge Computing via Federated Learning and Deep Reinforcement Learning
    Wang, Yali
    Chen, Jiachao
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022