Elliptic normal curves of even degree and theta functions

被引:0
|
作者
Kaneko, Masanobu [1 ]
Kuwata, Masato [2 ]
机构
[1] Kyushu Univ, Fac Math, Motooka 744,Nishi Ku, Fukuoka, Fukuoka 8190395, Japan
[2] Chuo Univ, Fac Econ, 742-1 Higashinakano, Hachioji, Tokyo 1920393, Japan
关键词
Elliptic curve; Moduli; Level structure; Theta functions;
D O I
10.1007/s40993-024-00547-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An elliptic curve E can be immersed in PN-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{P}}<^>{N-1}$$\end{document} as a curve of degree N by means of the linear system of |NO|, where O is the origin of E. Well-known classical results going back to Bianchi and Klein say that if N is odd, this immersion is uniquely determined by specifying a full-level N structure. In this paper we show that if N is even, uniqueness of immersion is ensured by specifying a level structure associated with a certain congruence subgroup between Gamma(N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (N)$$\end{document} and Gamma(2N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma (2N)$$\end{document}. Moreover, we construct, over the complex number field, an immersion by means of suitably chosen theta functions, and write down the quadratic equations satisfied by them.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Theta functions and singular torsion on elliptic curves
    Boxall, J
    Grant, D
    [J]. NUMBER THEORY FOR THE MILLENNIUM I, 2002, : 111 - 126
  • [2] Geometry of elliptic normal curves of degree 6
    Shatsila, Anatoli
    [J]. COMMUNICATIONS IN ALGEBRA, 2023, 51 (12) : 5344 - 5358
  • [3] A Theta Model for Elliptic Curves
    Emmanuel Fouotsa
    Oumar Diao
    [J]. Mediterranean Journal of Mathematics, 2017, 14
  • [4] A Theta Model for Elliptic Curves
    Fouotsa, Emmanuel
    Diao, Oumar
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)
  • [5] Elliptic Functions and the Appell Theta Functions
    Liu, Zhi-Guo
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (11) : 2064 - 2093
  • [6] An Encoding for the Theta Model of Elliptic Curves
    Diarra, Nafissatou
    Fouotsa, Emmanuel
    [J]. INNOVATIONS AND INTERDISCIPLINARY SOLUTIONS FOR UNDERSERVED AREAS, INTERSOL 2018, 2018, 249 : 224 - 235
  • [7] Theta functions of superelliptic curves
    Beshaj, Lubjana
    Elezi, Artur
    Shaska, Tony
    [J]. ADVANCES ON SUPERELLIPTIC CURVES AND THEIR APPLICATIONS, 2015, 41 : 47 - 69
  • [8] Fast generation of elliptic curves with prime order over extension field of even extension degree
    Nogami, Y
    Morikawa, Y
    [J]. 2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 18 - 18
  • [9] Fast generation of elliptic curves with prime order over extension field of even extension degree
    [J]. Nogami, Y. (nogami@cne.okayama-u.ac.jp), 1600, IEEE Information Theory Society (Institute of Electrical and Electronics Engineers Inc.):
  • [10] High-degree Compression Functions on Alternative Models of Elliptic Curves and their Applications
    Wronski, Michal
    Kijko, Tomasz
    Drylo, Robert
    [J]. FUNDAMENTA INFORMATICAE, 2021, 184 (02) : 107 - 139