Deep Learning-based Diagnosis of Thyroid Tumors using Histopathology Images from Thyroid Nodule Capsule

被引:0
|
作者
Shah, Nitya A. [1 ]
Suthar, Jinal [1 ]
Tejaswee, A. [1 ]
Enache, Adrian [2 ]
Eftimie, Lucian G. [2 ]
Hristu, Radu [3 ]
Paul, Angshuman [1 ]
机构
[1] Indian Inst Technol Jodhpur, Jheepasani, India
[2] Cent Univ Emergency Mil Hosp, Bucharest, Romania
[3] Univ Politehn Bucuresti, Bucharest, Romania
关键词
Thyroid tumor; Differential diagnosis; Histopathology; Thyroid nodule capsule;
D O I
10.1117/12.3006242
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Histopathology analysis of thyroid nodule is the current gold standard for the differential diagnosis of thyroid tumors. Deep learning methods have been extensively used for the diagnosis of histopathology images. We look into the possibility of the differential diagnosis of thyroid tumors by analysing histopathology images of thyroid nodule capsules using different deep learning methods namely Residual Network (ResNet), Densely Connected Network (DenseNet) and Vision Transformer (ViT). To evaluate the performance in the classification task, we use various performance metrics including precision, recall, F1-score, and AUROC score. Our study shows the superiority of the histopathology images of thyroid nodule capsules for the differential diagnosis of thyroid tumors compared to histopathology images of thyroid nodules.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Deep Learning-Based Differential Diagnosis of Follicular Thyroid Tumors Using Histopathological Images
    Nojima, Satoshi
    Kadoi, Tokimu
    Suzuki, Ayana
    Kato, Chiharu
    Ishida, Shoichi
    Kido, Kansuke
    Fujita, Kazutoshi
    Okuno, Yasushi
    Hirokawa, Mitsuyoshi
    Terayama, Kei
    Morii, Eiichi
    [J]. MODERN PATHOLOGY, 2023, 36 (11)
  • [2] A Machine Learning-based Diagnosis of Thyroid Cancer Using Thyroid Nodules Ultrasound Images
    Ma, Xuesi
    Xi, Baohang
    Zhang, Yi
    Zhu, Lijuan
    Sui, Xin
    Tian, Geng
    Yang, Jialiang
    [J]. CURRENT BIOINFORMATICS, 2020, 15 (04) : 349 - 358
  • [3] A novel intelligent thyroid nodule diagnosis system over ultrasound images based on deep learning
    Yi, Zhike
    Hao, Aimin
    Song, Wenfeng
    Li, Hongyi
    Li, Bowen
    [J]. 2017 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY AND VISUALIZATION (ICVRV 2017), 2017, : 150 - 155
  • [4] AN IMPROVED DEEP LEARNING APPROACH FOR THYROID NODULE DIAGNOSIS
    Guo, Xiangdong
    Zhao, Haifeng
    Tang, Zhenyu
    [J]. 2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 296 - 299
  • [5] Automatic Malignant Thyroid Nodule Recognition in Ultrasound Images based on Deep Learning
    Zhou, Meng
    Wang, Rui
    Fu, Peng
    Bai, Yang
    Cui, Ligang
    [J]. 2020 INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND BIOENGINEERING (ICEEB 2020), 2020, 185
  • [6] Deep learning-based artificial intelligence model to assist thyroid nodule diagnosis and management: a multicentre diagnostic study
    Peng, Sui
    Liu, Yihao
    Lv, Weiming
    Liu, Longzhong
    Zhou, Qian
    Yang, Hong
    Ren, Jie
    Liu, Guangjian
    Wang, Xiaodong
    Zhang, Xuehua
    Du, Qiang
    Nie, Fangxiang
    Huang, Gao
    Guo, Yuchen
    Li, Jie
    Liang, Jinyu
    Hu, Hangtong
    Xiao, Han
    Liu, Zelong
    Lai, Fenghua
    Zheng, Qiuyi
    Wang, Haibo
    Li, Yanbing
    Alexander, Erik K.
    Wang, Wei
    Xiao, Haipeng
    [J]. LANCET DIGITAL HEALTH, 2021, 3 (04): : E250 - E259
  • [7] Automated machine learning-based radiomics analysis versus deep learning-based classification for thyroid nodule on ultrasound images: a multi-center study
    Liu, Zelong
    Deyer, Louisa
    Yang, Arnold
    Liu, Steven
    Gong, Jingqi
    Yang, Yang
    Huang, Mingqian
    Doshi, Amish
    Lu, Meng
    Lee, Denise
    Deyer, Timothy
    Mei, Xueyan
    [J]. 2022 IEEE 22ND INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2022), 2022, : 23 - 28
  • [8] Automated Segmentation of Thyroid Nodule, Gland, and Cystic Components From Ultrasound Images Using Deep Learning
    Kumar, Viksit
    Webb, Jeremy
    Gregory, Adriana
    Meixner, Duane D.
    Knudsen, John M.
    Callstrom, Matthew
    Fatemi, Mostafa
    Alizad, Azra
    [J]. IEEE ACCESS, 2020, 8 : 63482 - 63496
  • [9] Deep Learning for Analyzing Thyroid Nodule Malignancy Based on the Composition Characteristic of the Ultrasonography Images
    Nugroho, Hanung Adi
    Frannita, Eka Legya
    Hutami, Augustine Henni Tita
    Chondah, Lina
    Nugroho, Anan
    Fauzi, Rizki Nur
    Setiawan, Nurhuda Hendra
    [J]. ICACSIS 2020: 2020 12TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND INFORMATION SYSTEMS (ICACSIS), 2020, : 77 - 81
  • [10] Deep learning-based CAD system design for thyroid tumor characterization using ultrasound images
    Yadav, Niranjan
    Dass, Rajeshwar
    Virmani, Jitendra
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (14) : 43071 - 43113