RAIN: machine learning-based identification for HIV-1 bNAbs

被引:0
|
作者
Foglierini, Mathilde [1 ,2 ,3 ,4 ]
Nortier, Pauline [1 ,2 ,3 ]
Schelling, Rachel [1 ,2 ,3 ]
Winiger, Rahel R. [1 ,2 ,3 ]
Jacquet, Philippe [5 ]
O'Dell, Sijy [6 ]
Demurtas, Davide [7 ]
Mpina, Maxmillian [8 ]
Lweno, Omar [8 ]
Muller, Yannick D. [1 ,2 ,3 ]
Petrovas, Constantinos [9 ]
Daubenberger, Claudia [10 ,11 ]
Perreau, Matthieu [1 ,2 ]
Doria-Rose, Nicole A. [6 ]
Gottardo, Raphael [2 ,4 ]
Perez, Laurent [1 ,2 ,3 ]
机构
[1] Univ Lausanne, Lausanne Univ Hosp, Dept Med, Serv Immunol & Allergy, Lausanne, Switzerland
[2] Univ Lausanne, Lausanne, Switzerland
[3] Ctr Human Immunol, Lausanne, Switzerland
[4] Lausanne Univ Hosp, Biomed Data Sci Ctr, Lausanne, Switzerland
[5] Univ Lausanne, Sci Comp & Res Support Unit, Lausanne, Switzerland
[6] NIAID, Vaccine Res Ctr, NIH, Bethesda, MD USA
[7] Ecole Polytech Fed Lausanne, Interdisciplinary Ctr Electron Microscopy CIME, Lausanne, Switzerland
[8] Ifakara Hlth Inst, Bagamoyo, Tanzania
[9] Lausanne Univ Hosp, Inst Pathol, Dept Lab Med & Pathol, Lausanne, Switzerland
[10] Swiss Trop & Publ Hlth Inst, Clin Immunol Unit, Dept Med Parasitol & Infect Biol, Basel, Switzerland
[11] Univ Basel, Basel, Switzerland
关键词
BROADLY NEUTRALIZING ANTIBODIES; STRUCTURAL BASIS; VACCINE; SEQUENCE; COEVOLUTION; REPERTOIRE; MATURATION; FRAMEWORK; FEATURES; REVEALS;
D O I
10.1038/s41467-024-49676-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Broadly neutralizing antibodies (bNAbs) are promising candidates for the treatment and prevention of HIV-1 infections. Despite their critical importance, automatic detection of HIV-1 bNAbs from immune repertoires is still lacking. Here, we develop a straightforward computational method for the Rapid Automatic Identification of bNAbs (RAIN) based on machine learning methods. In contrast to other approaches, which use one-hot encoding amino acid sequences or structural alignment for prediction, RAIN uses a combination of selected sequence-based features for the accurate prediction of HIV-1 bNAbs. We demonstrate the performance of our approach on non-biased, experimentally obtained and sequenced BCR repertoires from HIV-1 immune donors. RAIN processing leads to the successful identification of distinct HIV-1 bNAbs targeting the CD4-binding site of the envelope glycoprotein. In addition, we validate the identified bNAbs using an in vitro neutralization assay and we solve the structure of one of them in complex with the soluble native-like heterotrimeric envelope glycoprotein by single-particle cryo-electron microscopy (cryo-EM). Overall, we propose a method to facilitate and accelerate HIV-1 bNAbs discovery from non-selected immune repertoires. Artificial intelligence holds great promise to improve diagnosis of numerous immune-related or infectious diseases. Here, the authors show that machine learning can be used to identify HIV-1 specific broad neutralising antibody.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Machine learning-based predictive models for identifying high active compounds against HIV-1 integrase
    Parvez, M. K.
    Al-Dosari, M. S.
    Sinha, G. P.
    [J]. SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2022, 33 (05) : 387 - 402
  • [2] Next-generation bNAbs for HIV-1 cure strategies
    Schriek, A. I.
    Aldon, Y. L. T.
    van Gils, M. J.
    de Taeye, S. W.
    [J]. ANTIVIRAL RESEARCH, 2024, 222
  • [3] Machine Learning-Based Identification of Lithic Microdebitage
    Eberl, Markus
    Bell, Charreau S.
    Spencer-Smith, Jesse
    Raj, Mark
    Sarubbi, Amanda
    Johnson, Phyllis S.
    Rieth, Amy E.
    Chaudhry, Umang
    Estrada Aguila, Rebecca
    McBride, Michael
    [J]. ADVANCES IN ARCHAEOLOGICAL PRACTICE, 2023, 11 (02): : 152 - 163
  • [4] Machine learning-based identification of craniosynostosis in newborns
    Sabeti, Malihe
    Boostani, Reza
    Moradi, Ehsan
    Shakoor, Mohammad Hossein
    [J]. MACHINE LEARNING WITH APPLICATIONS, 2022, 8
  • [5] Cross-reactivity between HIV-1 bnAbs and parasite glycans
    Huettner, I.
    Krumm, S.
    Landais, E.
    Brzezicka, K.
    Serna, S.
    van Diepen, A.
    Angulo, J.
    Allan, F.
    Emery, A.
    Reichardt, N.
    Hokke, R.
    Poignard, P.
    Doores, K.
    [J]. JOURNAL OF THE INTERNATIONAL AIDS SOCIETY, 2021, 24
  • [6] Classification and Design of HIV-1 Integrase Inhibitors Based on Machine Learning
    Zhou, Junlin
    Hao, Juan
    Peng, Lianxin
    Duan, Huaichuan
    Luo, Qing
    Yan, Hailian
    Wan, Hua
    Hu, Yichen
    Liang, Li
    Xie, Zhenjian
    Liu, Wei
    Zhao, Gang
    Hu, Jianping
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
  • [7] The Use of Broadly Neutralizing Antibodies (bNAbs) in HIV-1 Treatment and Prevention
    Thavarajah, Jannifer Jasmin
    Honge, Bo Langhoff
    Wejse, Christian Morberg
    [J]. VIRUSES-BASEL, 2024, 16 (06):
  • [8] Machine Learning-based Classifier Predicts Clinical HIV-1 Isolate Neutralization Susceptibility to Neutralizing Antibodies With High Accuracy
    Rawi, Reda
    Shen, Chen-Hsiang
    Mall, Raghvendra
    Doria-Rose, Nicole A.
    Farney, S. Katie
    Shiakolas, Andrea
    Zhou, Jing
    Chun, Tae-Wook
    Lynch, Rebecca
    Mascola, John R.
    Kwong, Peter D.
    Chuang, Gwo-Yu
    [J]. AIDS RESEARCH AND HUMAN RETROVIRUSES, 2018, 34 : 134 - 134
  • [9] Poly- and autoreactivity of HIV-1 bNAbs: implications for vaccine design
    Finney, Joel
    Kelsoe, Garnett
    [J]. RETROVIROLOGY, 2018, 15
  • [10] Poly- and autoreactivity of HIV-1 bNAbs: implications for vaccine design
    Joel Finney
    Garnett Kelsoe
    [J]. Retrovirology, 15