An interpretable approach using hybrid graph networks and explainable AI for intelligent diagnosis recommendations in chronic disease care

被引:0
|
作者
Huang, Mengxing [1 ]
Zhang, Xiu Shi [1 ]
Bhatti, Uzair Aslam [1 ]
Wu, YuanYuan [1 ]
Zhang, Yu [1 ]
Yasin Ghadi, Yazeed [2 ]
机构
[1] School of Information and Communication Engineering, Hainan University, Haikou,570100, China
[2] Department of Computer Science, Al Ain University, United Arab Emirates
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Biomedical engineering - Collaborative filtering - Decision making - Diagnosis - Graphic methods - Health care - Hospitals - Mean square error - Recommender systems
引用
收藏
相关论文
共 50 条
  • [1] An interpretable approach using hybrid graph networks and explainable AI for intelligent diagnosis recommendations in chronic disease care
    Huang, Mengxing
    Zhang, Xiu Shi
    Bhatti, Uzair Aslam
    Wu, YuanYuan
    Zhang, Yu
    Ghadi, Yazeed Yasin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 91
  • [2] Advanced interpretable diagnosis of Alzheimer's disease using SECNN-RF framework with explainable AI
    AbdelAziz, Nabil M.
    Said, Wael
    AbdelHafeez, Mohamed M.
    Ali, Asmaa H.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7
  • [3] Explainable AI: A Hybrid Approach to Generate Human-Interpretable Explanation for Deep Learning Prediction
    De, Tanusree
    Giri, Prasenjit
    Mevawala, Ahmeduvesh
    Nemani, Ramyasri
    Deo, Arati
    COMPLEX ADAPTIVE SYSTEMS, 2020, 168 : 40 - 48
  • [4] Multi-Modal Diagnosis of Alzheimer's Disease Using Interpretable Graph Convolutional Networks
    Zhou, Houliang
    He, Lifang
    Chen, Brian Y.
    Shen, Li
    Zhang, Yu
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2025, 44 (01) : 142 - 153
  • [5] Explainable AI Framework for Alzheimer's Diagnosis Using Convolutional Neural Networks
    Mansouri, Dhekra
    Echtioui, Amira
    Khemakhem, Rafik
    Ben Hamida, Ahmed
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES, SIGNAL AND IMAGE PROCESSING, ATSIP 2024, 2024, : 93 - 98
  • [6] Interpretable Retinal Disease Classification from OCT Images Using Deep Neural Network and Explainable AI
    Reza, Md Tanzim
    Ahmed, Farzad
    Sharar, Shihab
    Rasel, Annajiat Alim
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON ELECTRONICS, COMMUNICATIONS AND INFORMATION TECHNOLOGY 2021 (ICECIT 2021), 2021,
  • [7] Personalized Explanations for Early Diagnosis of Alzheimer's Disease Using Explainable Graph Neural Networks with Population Graphs
    Kim, So Yeon
    BIOENGINEERING-BASEL, 2023, 10 (06):
  • [8] Predicting Atrial Fibrillation Relapse Using Bayesian Networks: Explainable AI Approach
    Alves, Joao Miguel
    Matos, Daniel
    Martins, Tiago
    Cavaco, Diogo
    Carmo, Pedro
    Galvao, Pedro
    Costa, Francisco Moscoso
    Morgado, Francisco
    Ferreira, Antonio Miguel
    Freitas, Pedro
    Dias, Claudia Camila
    Rodrigues, Pedro Pereira
    Adragao, Pedro
    JMIR CARDIO, 2025, 9
  • [9] Hybrid Approach of Classification of Monkeypox Disease: Integrating Transfer Learning with ViT and Explainable AI
    Siddick, MD Abu Bakar
    Yan, Zhang
    Aziz, Mohammad Tarek
    Rahman, Md Mokshedur
    Mahmud, Tanjim
    Farid, Sha Md
    Uglu, Valisher Sapayev Odilbek
    Irkinovna, Matchanova Barno
    Kuranbaevich, Atayev Shokir
    Hajiev, Ulugbek
    International Journal of Advanced Computer Science and Applications, 2024, 15 (12) : 849 - 861
  • [10] Dual-Graph Learning Convolutional Networks for Interpretable Alzheimer's Disease Diagnosis
    Xiao, Tingsong
    Zeng, Lu
    Shi, Xiaoshuang
    Zhu, Xiaofeng
    Wu, Guorong
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VIII, 2022, 13438 : 406 - 415