Motivated by applications, we introduce a general and new framework for operator valued positive definite kernels. We further give applications both to operator theory and to stochastic processes. The first one yields several dilation constructions in operator theory, and the second to general classes of stochastic processes. For the latter, we apply our operator valued kernel-results in order to build new Hilbert space-valued Gaussian processes, and to analyze their structures of covariance configurations.
机构:
Indian Stat Inst, Stat & Math Unit, 8th Mile,Mysore Rd, Bangalore 560059, Karnataka, IndiaIndian Stat Inst, Stat & Math Unit, 8th Mile,Mysore Rd, Bangalore 560059, Karnataka, India
Kumari, Rani
Sarkar, Jaydeb
论文数: 0引用数: 0
h-index: 0
机构:
Indian Stat Inst, Stat & Math Unit, 8th Mile,Mysore Rd, Bangalore 560059, Karnataka, IndiaIndian Stat Inst, Stat & Math Unit, 8th Mile,Mysore Rd, Bangalore 560059, Karnataka, India
Sarkar, Jaydeb
Sarkar, Srijan
论文数: 0引用数: 0
h-index: 0
机构:
Indian Stat Inst, Stat & Math Unit, 8th Mile,Mysore Rd, Bangalore 560059, Karnataka, IndiaIndian Stat Inst, Stat & Math Unit, 8th Mile,Mysore Rd, Bangalore 560059, Karnataka, India
Sarkar, Srijan
Timotin, Dan
论文数: 0引用数: 0
h-index: 0
机构:
Romanian Acad, Inst Math, POB 1-764, Bucharest 014700, RomaniaIndian Stat Inst, Stat & Math Unit, 8th Mile,Mysore Rd, Bangalore 560059, Karnataka, India