The fundamental solution of the master equation for a jump-diffusion Ornstein-Uhlenbeck process

被引:0
|
作者
Rozanova, Olga S. [1 ]
Krutov, Nikolai A. [1 ]
机构
[1] Lomonosov Moscow State Univ, Math & Mech Dept, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
exact solution; fundamental solution; generalized Ornstein-Uhlenbeck process; Kolmogorov-Feller equation; probability density; DENSITIES; SWITCHES;
D O I
10.1002/mana.202300200
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An integro-differential equation for the probability density of the generalized stochastic Ornstein-Uhlenbeck process with jump diffusion is considered for a special case of the Laplacian distribution of jumps. It is shown that for a certain ratio between the intensity of jumps and the speed of reversion, the fundamental solution can be found explicitly, as a finite sum. Alternatively, the fundamental solution can be represented as converging power series. The properties of this solution are investigated. The fundamental solution makes it possible to obtain explicit formulas for the density at each instant of time, which is important, for example, for testing numerical methods.
引用
收藏
页码:3052 / 3063
页数:12
相关论文
共 50 条
  • [1] MASTER EQUATION SOLUTION OF ORNSTEIN-UHLENBECK PROCESSES
    BOWEN, JI
    MEIJER, PHE
    [J]. PHYSICA, 1960, 26 (07): : 485 - 491
  • [2] A solution of the ornstein-uhlenbeck equation
    Moon B.S.
    Thompson R.C.
    [J]. Journal of Applied Mathematics and Computing, 2006, 20 (1-2) : 445 - 454
  • [3] A diffusion equation from the relativistic Ornstein-Uhlenbeck process
    Debbasch, F
    Rivet, JP
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (5-6) : 1179 - 1199
  • [4] Pricing European Option under Fractional Jump-diffusion Ornstein-Uhlenbeck Model
    Xue Hong
    Sun Yudong
    [J]. RECENT ADVANCE IN STATISTICS APPLICATION AND RELATED AREAS, VOLS I AND II, 2009, : 164 - 169
  • [5] Exact solution for the Anisotropic Ornstein-Uhlenbeck process
    de Almeida, Rita M. C.
    Giardini, Guilherme S. Y.
    Vainstein, Mendeli
    Glazier, James A.
    Thomas, Gilberto L.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 587
  • [6] Wireless link prediction and triggering using modified Ornstein-Uhlenbeck jump diffusion process
    Chin, Eric
    Chieng, David
    Teh, Victor
    Natkaniec, Marek
    Loziak, Krzysztof
    Gozdecki, Janusz
    [J]. WIRELESS NETWORKS, 2014, 20 (03) : 379 - 396
  • [7] Controllability of the Ornstein-Uhlenbeck equation
    Barcenas, Diomedes
    Leiva, Hugo
    Urbina, Wilfredo
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2006, 23 (01) : 1 - 9
  • [8] Relativistic Ornstein-Uhlenbeck process
    Debbasch, F
    Mallick, K
    Rivet, JP
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (3-4) : 945 - 966
  • [9] The generalized Ornstein-Uhlenbeck process
    Caceres, MO
    Budini, AA
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (24): : 8427 - 8444
  • [10] A GENERALIZED ORNSTEIN-UHLENBECK PROCESS
    WITTIG, TA
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1984, 13 (01) : 29 - 43