Advance technology for treatment and recycling of electrolyte and organic matters from spent lithium-ion battery

被引:6
|
作者
Yu, Jie [1 ]
Huang, Kai [2 ]
Zheng, Jie [2 ]
Zhang, Lingen [1 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] Shanghai Xinjinqiao Environm Protect Co Ltd, Shanghai 200120, Peoples R China
关键词
Spent lithium-ion batteries; Electrolyte; Organic matters; Pretreatment technology; High-value utilization; CATHODE MATERIAL; RECOVERY; PYROLYSIS; EXTRACTION; REUSE; GREEN;
D O I
10.1016/j.cogsc.2024.100914
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Most studies nowadays focus on the recovery of precious metals in cathode from spent lithium-ion batteries (LIBs), neglecting the recycling of electrolyte and organic matters. The electrolyte and organic matters from spent LIBs can be converted into resources through component separation and regeneration, which brings certain economic benefits. In this review, the domestic and foreign pretreatment technologies of electrolyte from spent LIBs, such as high-temperature pyrolysis, solvent extraction, and supercritical CO2 extraction, are summarized, and the advantages and disadvantages of different pretreatment technologies are compared. In addition, the research progress of high-value utilization of electrolytes, separators, and binders are reviewed, and the development directions of the recycling process of electrolyte and organic matters are prospected.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Recycling of spent lithium-ion battery
    Lei S.-Y.
    Xu R.
    Sun W.
    Xu S.-M.
    Yang Y.
    Xu, Sheng-Ming (smxu@tsinghua.edu.cn); Yang, Yue (eric1911@126.com), 1600, Central South University of Technology (31): : 3303 - 3319
  • [2] Direct recovery: A sustainable recycling technology for spent lithium-ion battery
    Wu, Jiawei
    Zheng, Mengting
    Liu, Tiefeng
    Wang, Yao
    Liu, Yujing
    Nai, Jianwei
    Zhang, Liang
    Zhang, Shanqing
    Tao, Xinyong
    ENERGY STORAGE MATERIALS, 2023, 54 : 120 - 134
  • [3] Is it worthwhile to recover lithium-ion battery electrolyte during lithium-ion battery recycling?
    Vanderburgt, Stephen
    Santos, Rafael M.
    Chiang, Yi Wai
    RESOURCES CONSERVATION AND RECYCLING, 2023, 189
  • [4] Recycling spent lithium-ion battery cathode: an overview
    Zhang, Xun
    Zhu, Maiyong
    GREEN CHEMISTRY, 2024, 26 (13) : 7656 - 7717
  • [5] Recycling of Spent Lithium-Ion Battery: A Critical Review
    Zeng, Xianlai
    Li, Jinhui
    Singh, Narendra
    CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2014, 44 (10) : 1129 - 1165
  • [6] Lithium recovery and solvent reuse from electrolyte of spent lithium-ion battery
    Xu, Rui
    Lei, Shuya
    Wang, Tianyu
    Yi, Chenxing
    Sun, Wei
    Yang, Yue
    WASTE MANAGEMENT, 2023, 167 : 135 - 140
  • [7] A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery
    Yang, Yue
    Song, Shaole
    Lei, Shuya
    Sun, Wei
    Hou, Hongshuai
    Jiang, Feng
    Ji, Xiaobo
    Zhao, Wenqing
    Hu, Yuehua
    WASTE MANAGEMENT, 2019, 85 : 529 - 537
  • [8] Advanced direct recycling technology enables a second life of spent lithium-ion battery
    Shen, Ji
    Zhou, Miaomiao
    Liu, Wei
    Shi, Yiliang
    Tang, Wenhao
    Deng, Yirui
    Liu, Ruiping
    Zuo, Yinze
    Zhang, Jiujun
    ENERGY STORAGE MATERIALS, 2025, 74
  • [9] Technology for recycling and regenerating graphite from spent lithium-ion batteries
    Yi, Chenxing
    Zhou, Lijie
    Wu, Xiqing
    Sun, Wei
    Yi, Longsheng
    Yang, Yue
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2021, 39 : 37 - 50
  • [10] Recycling and Regeneration of Spent Lithium-Ion Battery Cathode Materials
    Wang, Guange
    Zhang, Huaning
    Wu, Tong
    Liu, Borui
    Huang, Qing
    Su, Yuefeng
    PROGRESS IN CHEMISTRY, 2020, 32 (12) : 2064 - 2072