Existence of solutions to a strongly nonlinear elliptic coupled system of finite order

被引:1
|
作者
Lahrache, Manar [1 ]
Rhoudaf, Mohamed [1 ]
Talbi, Hajar [1 ]
机构
[1] Moulay Ismail Univ, Fac Sci, Lab Math & Their Interact, BP 11201, Meknes, Morocco
关键词
Sobolev spaces of finite order; Coupled system; Capacity solution; Weak solution; Nonlinear elliptic equation; Degenerate problem; Thermistor problem; CAPACITY SOLUTION;
D O I
10.1007/s43036-024-00350-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of a capacity solution to the strongly nonlinear degenerate problem, namely, H(theta)+g(x,theta)=sigma(theta)|del psi|2,div(sigma(theta)del psi)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(\theta )+g(x,\theta )=\sigma (\theta )|\nabla \psi |<^>{2}, {\text {div}}(\sigma (\theta ) \nabla \psi )=0$$\end{document} in Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} where g(x,theta)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g(x,\theta )$$\end{document} is a lower order term satisfies the sign condition but without any restriction on its growth and the operator H is of the form H(theta)=& sum;|nu|=0r(-1)|nu|D nu h nu x,D gamma theta,|gamma|<=|nu|,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} H (\theta )=\sum _{|\nu |=0}<^>{r}(-1)<^>{|\nu |} D<^>\nu \left( h_\nu \left( x, D<^>\gamma \theta \right) \right) , \quad |\gamma | \le |\nu |, \end{aligned}$$\end{document}is proved in the framework of Sobolev space of finite order.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Existence of solutions to a strongly nonlinear parabolic-elliptic coupled system of infinite order
    Chahboune, Manar
    Rhoudaf, Mohamed
    Talbi, Hajar
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024, 17 (10)
  • [2] EXISTENCE OF A SOLUTION OF A STRONGLY NONLINEAR ELLIPTIC SYSTEM
    KIRICHENKO, VF
    SUROVA, NS
    DIFFERENTIAL EQUATIONS, 1986, 22 (10) : 1211 - 1215
  • [3] Existence of strong and nontrivial solutions to strongly coupled elliptic systems
    Le, Dung
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (11) : 4407 - 4459
  • [4] Existence results for strongly, nonlinear elliptic equations of infinite order
    Benkirane, A.
    Chrif, M.
    El Manouni, S.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2007, 26 (03): : 303 - 312
  • [5] On the existence of bounded solutions for a nonlinear elliptic system
    Duran, Ricardo G.
    Sanmartino, Marcela
    Toschi, Marisa
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2012, 191 (04) : 771 - 782
  • [6] Existence of Weak Solutions for a Nonlinear Elliptic System
    Ming Fang
    Robert P Gilbert
    Boundary Value Problems, 2009
  • [7] On the existence of bounded solutions for a nonlinear elliptic system
    Ricardo G. Durán
    Marcela Sanmartino
    Marisa Toschi
    Annali di Matematica Pura ed Applicata, 2012, 191 : 771 - 782
  • [8] Existence of Weak Solutions for a Nonlinear Elliptic System
    Fang, Ming
    Gilbert, Robert P.
    BOUNDARY VALUE PROBLEMS, 2009,
  • [9] EXISTENCE OF SOLUTIONS FOR A NONLINEAR DEGENERATE ELLIPTIC SYSTEM
    Nguyen Minh Chuong
    Tran Dinh Ke
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2004,
  • [10] ON THE EXISTENCE OF CONTINUOUS SOLUTIONS FOR NONLINEAR FOURTH-ORDER ELLIPTIC EQUATIONS WITH STRONGLY GROWING LOWER-ORDER TERMS
    Voitovych, Mykhailo V.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2017, 47 (02) : 667 - 685