Sensitivity analysis of the WRF simulated planetary boundary layer height to synoptic conditions over eastern China

被引:1
|
作者
Li, Yarong [1 ,2 ,3 ]
He, Jianjun [1 ,2 ,4 ]
Li, Jiming [3 ]
Ren, Hong-Li [5 ,6 ]
Wang, Hong [1 ,2 ]
Luo, Wangjun [7 ]
Gong, Sunling [1 ,2 ]
Che, Huizheng [1 ,2 ]
Zhang, Xiaoye [1 ,2 ]
机构
[1] Chinese Acad Meteorol Sci, State Key Lab Severe Weather LASW, Beijing 100081, Peoples R China
[2] Chinese Acad Meteorol Sci, Key Lab Atmospher Chem CMA, Beijing 100081, Peoples R China
[3] Lanzhou Univ, Coll Atmospher Sci, Key Lab Semiarid Climate Change, Minist Educ, Lanzhou 730000, Peoples R China
[4] Hainan Univ, State Key Lab Marine Resources Utilizat South Chin, Haikou 570228, Peoples R China
[5] Chinese Acad Meteorol Sci, State Key Lab Severe Weather, Beijing 100081, Peoples R China
[6] Chinese Acad Meteorol Sci, Inst Tibetan Plateau Meteorol, Beijing 100081, Peoples R China
[7] Gannan Meteorol Bur, Gannan 746300, Peoples R China
基金
中国国家自然科学基金;
关键词
PBLH; Synoptic pattern; Sensitivity; Simulation bias; Attribution; PBL SCHEMES; PARAMETERIZATION SCHEMES; DIURNAL CYCLES; MODEL; RADIOSONDE; PATTERNS; CLASSIFICATION; POLLUTION; IMPACTS; WEATHER;
D O I
10.1016/j.atmosres.2024.107330
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Accurately representing the planetary boundary layer height (PBLH) and its thermal/dynamic structures within is essential for simulating meteorological and environmental conditions in numerical models. However, how accurately model reproduces PBL processes under diverse synoptic conditions remains under-explored. Using the Weather Research Forecasting model that configured with the widely-used YSU boundary layer scheme, the present study conducted a nearly three-year PBL simulation to examine its sensitivity to synoptic conditions in eastern China. Nine types of synoptic patterns were identified by combining T-mode principal component analysis with K-means clustering. The simulated PBLH varied significantly with synoptic patterns, with the PBLH magnitude over land following the order: quasi-summer monsoon > transition > quasi-winter monsoon. In terms of simulation biases, the model presented an overall overestimation of PBLH over most land and an underestimation over the ocean compared with two spaceborne lidars (Cloud Aerosol Transport System; Cloud Aerosol Lidar with Orthogonal Polarization) and radiosondes; The overestimation and underestimation were amplified under quasi-summer monsoon types. As the synoptic patterns were characterized by different levels of pressure, wind, temperature, and humidity. This study further explored the relationship between model biases and meteorological factors. The results showed that the simulated PBLH biases in unstable conditions were linearly dependent on thermal factors, and showed less relationship with dynamical factors. The negative PBLH biases under warm, dry, and unstable conditions can be attributed to the model's underestimation of virtual potential temperature at lowest model level. While the positive PBLH biases under cold, wet, and stable conditions were caused by warm bias of virtual potential temperature profile at lower levels.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Sensitivity of WRF-simulated planetary boundary layer height to land cover and soil changes
    Acs, Ferenc
    Gyoengyoesi, Andras Zeno
    Breuer, Hajnalka
    Horvath, Akos
    Mona, Tamas
    Rajkai, Kalman
    METEOROLOGISCHE ZEITSCHRIFT, 2014, 23 (03) : 279 - 293
  • [2] Diurnal course analysis of the WRF-simulated and observation-based planetary boundary layer height
    Breuer, H.
    Acs, F.
    Horvath, A.
    Nemeth, P.
    Rajkai, K.
    ADVANCES IN SCIENCE AND RESEARCH, 2014, 11 : 83 - 88
  • [3] Sensitivity of WRF/Chem simulated PM2.5 to initial/boundary conditions and planetary boundary layer parameterization schemes over the Indo-Gangetic Plain
    Preeti Gunwani
    Gaurav Govardhan
    Chinmay Jena
    Prafull Yadav
    Santosh Kulkarni
    Sreyashi Debnath
    Pooja V. Pawar
    Manoj Khare
    Akshara Kaginalkar
    Rajesh Kumar
    Sandeep Wagh
    Dilip Chate
    Sachin D. Ghude
    Environmental Monitoring and Assessment, 2023, 195
  • [4] Sensitivity of WRF/Chem simulated PM2.5 to initial/boundary conditions and planetary boundary layer parameterization schemes over the Indo-Gangetic Plain
    Gunwani, Preeti
    Govardhan, Gaurav
    Jena, Chinmay
    Yadav, Prafull
    Kulkarni, Santosh
    Debnath, Sreyashi
    Pawar, Pooja V.
    Khare, Manoj
    Kaginalkar, Akshara
    Kumar, Rajesh
    Wagh, Sandeep
    Chate, Dilip
    Ghude, Sachin D.
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (05)
  • [5] Comparison of the WRF and Sodar derived planetary boundary layer height
    Kryza, Maciej
    Drzeniecka-Osiadacz, Anetta
    Werner, Malgorzata
    Netzel, Pawel
    Dore, Anthony J.
    INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2015, 58 (1-2) : 3 - 14
  • [6] Planetary boundary layer height from CALIOP compared to radiosonde over China
    Zhang, Wanchun
    Guo, Jianping
    Miao, Yucong
    Liu, Huan
    Zhang, Yong
    Li, Zhengqiang
    Zhai, Panmao
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (15) : 9951 - 9963
  • [7] Evaluation of Boundary Layer Height Simulated by WRF Mode Based on Lidar
    Xiang Y.
    Zhang T.
    Liu J.
    Lü L.
    Zhongguo Jiguang/Chinese Journal of Lasers, 2019, 46 (01):
  • [8] Evaluation of Boundary Layer Height Simulated by WRF Mode Based on Lidar
    Xiang Yan
    Zhang Tianshu
    Liu Jianguo
    Lu Lihui
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2019, 46 (01):
  • [9] Trends in Planetary Boundary Layer Height over Europe
    Zhang, Yehui
    Seidel, Dian J.
    Zhang, Shaodong
    JOURNAL OF CLIMATE, 2013, 26 (24) : 10071 - 10076
  • [10] A Forecast Evaluation of Planetary Boundary Layer Height Over the Ocean
    Lavers, David A.
    Beljaars, Anton
    Richardson, David S.
    Rodwell, Mark J.
    Pappenberger, Florian
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (09) : 4975 - 4984