AI-based computational H&E staining in lymphomas

被引:0
|
作者
Wake, Laura M. [1 ]
Koka, Rima [2 ]
Kallen, Michael E. [2 ]
机构
[1] Johns Hopkins Univ Hosp, Dept Pathol, Baltimore, MD USA
[2] Univ Maryland, Sch Med, Dept Pathol, 22 S Greene St,NBW-54, Baltimore, MD 21201 USA
关键词
Artificial intelligence; Neural network; Machine learning; Computational stains; Lymphoma;
D O I
10.1007/s12308-024-00590-x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:175 / 177
页数:3
相关论文
共 50 条
  • [1] Assessment of AI-based computational H&E staining versus chemical H&E staining for primary diagnosis in lymphomas: a brief interim report
    Koka, Rima
    Wake, Laura M.
    Ku, Nam K.
    Rice, Kathryn
    LaRocque, Autumn
    Vidal, Elba G.
    Alexanian, Serge
    Kozikowski, Raymond
    Rivenson, Yair
    Kallen, Michael Edward
    [J]. JOURNAL OF CLINICAL PATHOLOGY, 2024,
  • [2] Assessment of AI Computational H&E Staining Versus Chemical H&E Staining for Primary Diagnosis in Lymphomas
    Rice, Kathryn
    Larocque, Autumn
    Alexanian, Serge
    Cellini, Ashley
    Robles, Carol
    Vidal, Elba
    Kozikowski, Raymond
    Rivenson, Yair
    Singh, Zeba
    Koka, Madhurima
    Kallen, Michael
    [J]. LABORATORY INVESTIGATION, 2024, 104 (03) : S1472 - S1474
  • [3] AI-Based Computational H&E Staining Enables Spatial Transcriptomic Analysis in Classic Hodgkin Lymphoma
    Kallen, Michael E.
    Wake, Laura M.
    Koka, Rima
    Vidal, Elba
    Kozikowski, Raymond
    Rivenson, Yair
    Alexanian, Serge
    [J]. INTERNATIONAL JOURNAL OF SURGICAL PATHOLOGY, 2024,
  • [4] AI-based detection of molecular biomarkers directly from H&E scanned slide
    Peled, N.
    Zalach, J.
    Hayun, I.
    Paz-Yaacov, N.
    [J]. ANNALS OF ONCOLOGY, 2021, 32 : S929 - S929
  • [5] Development of a reproducible AI-based spatial biomarker of the tumor immune infiltrate on H&E slides
    Di Proietto, Valentina
    El-Khoury, Jean
    Adjadj, Benjamin
    Gillet, Lucie
    Marteau, Ulysse
    Schutte, Kathryn
    Von Loga, Katharina
    [J]. CANCER RESEARCH, 2024, 84 (06)
  • [6] A diagnostic strategy for pulmonary fat embolism based on routine H&E staining using computational pathology
    Li, Dechan
    Zhang, Ji
    Guo, Wenqing
    Ma, Kaijun
    Qin, Zhiqiang
    Zhang, Jianhua
    Chen, Liqin
    Xiong, Ling
    Huang, Jiang
    Wan, Changwu
    Huang, Ping
    [J]. INTERNATIONAL JOURNAL OF LEGAL MEDICINE, 2024, 138 (03) : 849 - 858
  • [7] A diagnostic strategy for pulmonary fat embolism based on routine H&E staining using computational pathology
    Dechan Li
    Ji Zhang
    Wenqing Guo
    Kaijun Ma
    Zhiqiang Qin
    Jianhua Zhang
    Liqin Chen
    Ling Xiong
    Jiang Huang
    Changwu Wan
    Ping Huang
    [J]. International Journal of Legal Medicine, 2024, 138 : 849 - 858
  • [8] High-confidence AI-based biomarker profiling for H&E slides to optimize pathology workflow in lung cancer
    Ofek, Efrat
    Haj, Razan
    Molchanov, Yossef
    Yacobi, Rinat
    Mayer, Chen
    Barliya, Tilda
    Gazy, Inbal
    Dvir, Addie
    Hayun, Ido
    Zalach, Jonathan
    Yaacov, Nurit Paz
    Peled, Nir
    Bar, Jair
    Barshack, Iris
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2023, 41 (16)
  • [9] Development of an AI-based algorithm to quantify eosinophils in H&E images from colorectal cancer (CRC) tissue sections guided by biomarker staining using multiplex immunofluorescence imaging
    Hanifi, Arezoo
    Blain, Elizabeth
    Hargrove, James
    Lock, Jeff
    Tran, Nam
    Chizhevsky, Vladislav
    Au, Qingyan
    [J]. CANCER RESEARCH, 2024, 84 (06)
  • [10] Computational staining of tumor hypoxia from H&E images using convolutional neural networks
    Zaidi, Mark
    Cui, Haotian
    Wang, Bo
    Mckee, Trevor D.
    Wouters, Bradly G.
    [J]. CLINICAL CANCER RESEARCH, 2021, 27 (05)