Intersection numbers, polynomial division and relative cohomology

被引:3
|
作者
Brunello, Giacomo [1 ,2 ,3 ]
Chestnov, Vsevolod [1 ,2 ,4 ,5 ]
Crisanti, Giulio [1 ,2 ]
Frellesvig, Hjalte [6 ]
Mandal, Manoj K. [1 ,2 ]
Mastrolia, Pierpaolo [1 ,2 ]
机构
[1] Univ Padua, Dipartimento Fis & Astron, Via Marzolo 8, I-35131 Padua, Italy
[2] INFN, Sez Padova, Via Marzolo 8, I-35131 Padua, Italy
[3] Univ Paris Saclay, Inst Phys Theor, CEA, CNRS, F-91191 Gif Sur Yvette, France
[4] Univ Bologna, Dipartimento Fis & Astron, Via Irnerio 46, I-40126 Bologna, Italy
[5] INFN, Sez Bologna, Via Irnerio 46, I-40126 Bologna, Italy
[6] Univ Copenhagen, Niels Bohr Int Acad, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
来源
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Scattering Amplitudes; Differential and Algebraic Geometry; TWISTED PERIOD RELATIONS;
D O I
10.1007/JHEP09(2024)015
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present a simplification of the recursive algorithm for the evaluation of intersection numbers for differential n-forms, by combining the advantages emerging from the choice of delta-forms as generators of relative twisted cohomology groups and the polynomial division technique, recently proposed in the literature. We show that delta-forms capture the leading behaviour of the intersection numbers in presence of evanescent analytic regulators, whose use is, therefore, bypassed. This simplified algorithm is applied to derive the complete decomposition of two-loop planar and non-planar Feynman integrals in terms of a master integral basis. More generally, it can be applied to derive relations among twisted period integrals, relevant for physics and mathematical studies.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] Localization formulas of cohomology intersection numbers
    Matsubara-Heo, Saiei-Jaeyeong
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2023, 75 (03) : 909 - 940
  • [2] Relative cohomology of polynomial mappings
    Bonnet, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (10): : 913 - 916
  • [3] Relative cohomology of polynomial mappings
    Philippe Bonnet
    manuscripta mathematica, 2003, 110 : 413 - 432
  • [4] Relative cohomology of polynomial mappings
    Bonnet, P
    MANUSCRIPTA MATHEMATICA, 2003, 110 (04) : 413 - 432
  • [5] Symplectic Cohomology and q-Intersection Numbers
    Paul Seidel
    Jake P. Solomon
    Geometric and Functional Analysis, 2012, 22 : 443 - 477
  • [6] Symplectic Cohomology and q-Intersection Numbers
    Seidel, Paul
    Solomon, Jake P.
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2012, 22 (02) : 443 - 477
  • [7] Homology and cohomology intersection numbers of GKZ systems
    Goto, Yoshiaki
    Matsubara-Heo, Saiei-Jaeyeong
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2022, 33 (03): : 546 - 580
  • [8] Algorithms for Pfaffian Systems and Cohomology Intersection Numbers of Hypergeometric Integrals
    Matsubara-Heo, Saiei-Jaeyeong
    Takayama, Nobuki
    MATHEMATICAL SOFTWARE - ICMS 2020, 2020, 12097 : 73 - 84
  • [9] MULTIPLICATIVE DE RHAM THEOREMS FOR RELATIVE AND INTERSECTION SPACE COHOMOLOGY
    Schloder, Franz Wilhelm
    Essig, J. Timo
    JOURNAL OF SINGULARITIES, 2019, 19 : 97 - 130
  • [10] L∞ cohomology is intersection cohomology
    Valette, Guillaume
    ADVANCES IN MATHEMATICS, 2012, 231 (3-4) : 1818 - 1842