Development of an Artificial Intelligence Diagnostic System Using Linked Color Imaging for Barrett's Esophagus

被引:0
|
作者
Takeda, Tsutomu [1 ]
Asaoka, Daisuke [2 ]
Ueyama, Hiroya [1 ]
Abe, Daiki [1 ]
Suzuki, Maiko [2 ]
Inami, Yoshihiro [2 ]
Uemura, Yasuko [1 ]
Yamamoto, Momoko [1 ]
Iwano, Tomoyo [1 ]
Uchida, Ryota [1 ]
Utsunomiya, Hisanori [1 ]
Oki, Shotaro [1 ]
Suzuki, Nobuyuki [1 ]
Ikeda, Atsushi [1 ]
Akazawa, Yoichi [1 ]
Matsumoto, Kohei [1 ]
Ueda, Kumiko [1 ]
Hojo, Mariko [1 ]
Nojiri, Shuko [3 ]
Tada, Tomohiro [4 ]
Nagahara, Akihito [1 ]
机构
[1] Juntendo Univ, Dept Gastroenterol, Sch Med, Bunkyo Ku, Tokyo 1138421, Japan
[2] Juntendo Tokyo Koto Geriatr Med Ctr, Dept Gastroenterol, Tokyo 1360075, Japan
[3] Juntendo Univ, Sch Med, Dept Med Technol Innovat Ctr, Tokyo 1138421, Japan
[4] AI Med Serv Inc, Tokyo 1710013, Japan
关键词
artificial intelligence; Barrett's esophagus; computer-aided diagnosis; linked color imaging; Vision Transformer; CONVOLUTIONAL NEURAL-NETWORKS; COMPUTER-AIDED DETECTION; ADENOCARCINOMA; CLASSIFICATION; VALIDATION; VISIBILITY; EPITHELIUM; NEOPLASIA;
D O I
10.3390/jcm13071990
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Barrett's esophagus and esophageal adenocarcinoma cases are increasing as gastroesophageal reflux disease increases. Using artificial intelligence (AI) and linked color imaging (LCI), our aim was to establish a method of diagnosis for short-segment Barrett's esophagus (SSBE). Methods: We retrospectively selected 624 consecutive patients in total at our hospital, treated between May 2017 and March 2020, who experienced an esophagogastroduodenoscopy with white light imaging (WLI) and LCI. Images were randomly chosen as data for learning from WLI: 542 (SSBE+/- 348/194) of 696 (SSBE+/- 444/252); and LCI: 643 (SSBE+/- 446/197) of 805 (SSBE+/- 543/262). Using a Vision Transformer (Vit-B/16-384) to diagnose SSBE, we established two AI systems for WLI and LCI. Finally, 126 WLI (SSBE+/- 77/49) and 137 LCI (SSBE+/- 81/56) images were used for verification purposes. The accuracy of six endoscopists in making diagnoses was compared to that of AI. Results: Study participants were 68.2 +/- 12.3 years, M/F 330/294, SSBE+/- 409/215. The accuracy/sensitivity/specificity (%) of AI were 84.1/89.6/75.5 for WLI and 90.5/90.1/91.1/for LCI, and those of experts and trainees were 88.6/88.7/88.4, 85.7/87.0/83.7 for WLI and 93.4/92.6/94.6, 84.7/88.1/79.8 for LCI, respectively. Conclusions: Using AI to diagnose SSBE was similar in accuracy to using a specialist. Our finding may aid the diagnosis of SSBE in the clinic.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Usefulness of Linked Color Imaging in Barrett's Esophagus
    Takeda, Tsutomu
    Nagahara, Akihito
    Matsumoto, Kenshi
    Komori, Hiroyuki
    Akazawa, Yoichi
    Izumi, Kentaro
    Matsumoto, Kohei
    Ueyama, Hiroya
    Shimada, Yuji
    Asaoka, Daisuke
    Shibuya, Tomoyoshi
    Sakamoto, Naoto
    Osada, Taro
    Hojo, Mariko
    Watanabe, Sumio
    [J]. GASTROINTESTINAL ENDOSCOPY, 2017, 85 (05) : AB432 - AB433
  • [2] Artificial intelligence system for the detection of Barrett's esophagus
    Tsai, Ming-Chang
    Yen, Hsu-Heng
    Tsai, Hui-Yu
    Huang, Yu-Kai
    Luo, Yu-Sin
    Kornelius, Edy
    Sung, Wen-Wei
    Lin, Chun-Che
    Tseng, Ming-Hseng
    Wang, Chi-Chih
    [J]. WORLD JOURNAL OF GASTROENTEROLOGY, 2023, 29 (48) : 6198 - 6207
  • [3] 'Artificial intelligence in Barrett's Esophagus'
    Hamade, Nour
    Sharma, Prateek
    [J]. THERAPEUTIC ADVANCES IN GASTROINTESTINAL ENDOSCOPY, 2021, 14
  • [4] Artificial Intelligence in Surveillance of Barrett's Esophagus
    Madabhushi, Anant
    Toro, Paula
    Willis, Joseph E.
    [J]. CANCER RESEARCH, 2021, 81 (13) : 3446 - 3448
  • [5] INVESTIGATION OF THE USEFULNESS OF LINKED COLOR IMAGING (LCI) IN BARRETT'S ESOPHAGUS DIAGNOSIS
    Ishikawa, Kentaro
    Matsumura, Tomoaki
    Akizue, Naoki
    Ohta, Yuki
    Hamanaka, Shinsaku
    Taida, Takashi
    Okimoto, Kenichiro
    Saito, Keiko
    Maruoka, Daisuke
    Nakagawa, Tomoo
    Arai, Makoto
    Kato, Naoya
    [J]. GASTROINTESTINAL ENDOSCOPY, 2018, 87 (06) : AB290 - AB290
  • [6] LINKED COLOR IMAGING IMPROVES THE VISIBILITY OF BARRETT'S ESOPHAGUS AND ESOPHAGEAL ADENOCARCINOMA
    Tokunaga, Mamoru
    Matsumura, Tomoaki
    Ishikawa, Kentaro
    Akizue, Naoki
    Ohta, Yuki
    Okimoto, Kenichiro
    Saito, Keiko
    Maruoka, Daisuke
    Nakagawa, Tomoo
    Arai, Makoto
    Kato, Naoya
    [J]. GASTROINTESTINAL ENDOSCOPY, 2019, 89 (06) : AB451 - AB451
  • [7] Multimodal imaging for detection and segmentation of Barrett's esophagus-related neoplasia using artificial intelligence
    Ebigbo, Alanna
    Mendel, Robert
    Probst, Andreas
    Meinikheim, Michael
    Byrne, Michael F.
    Messmann, Helmut
    Palm, Christoph
    [J]. ENDOSCOPY, 2022, 54 (10) : E587 - E587
  • [8] The Efficacy of Linked Color Imaging in the Endoscopic Diagnosis of Barrett's Esophagus and Esophageal Adenocarcinoma
    Tokunaga, Mamoru
    Matsumura, Tomoaki
    Ishikawa, Kentaro
    Kaneko, Tatsuya
    Oura, Hirotaka
    Ishikawa, Tsubasa
    Nagashima, Ariki
    Shiratori, Wataru
    Okimoto, Kenichiro
    Akizue, Naoki
    Maruoka, Daisuke
    Ohta, Yuki
    Saito, Keiko
    Nakagawa, Tomoo
    Chiba, Tetsuhiro
    Arai, Makoto
    Kato, Jun
    Kato, Naoya
    [J]. GASTROENTEROLOGY RESEARCH AND PRACTICE, 2020, 2020
  • [9] Artificial Intelligence in the Detection of Barrett's Esophagus: A Systematic Review
    Patel, Akash
    Arora, Gagandeep Singh
    Roknsharifi, Mona
    Kaur, Parneet
    Laved, Hamna
    [J]. CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (10)
  • [10] Advanced imaging and artificial intelligence for Barrett's esophagus: What we should and soon will do
    Spadaccini, Marco
    Vespa, Edoardo
    Chandrasekar, Viveksandeep Thoguluva
    Desai, Madhav
    Patel, Harsh K.
    Maselli, Roberta
    Fugazza, Alessandro
    Carrara, Silvia
    Anderloni, Andrea
    Franchellucci, Gianluca
    De Marco, Alessandro
    Hassan, Cesare
    Bhandari, Pradeep
    Sharma, Prateek
    Repici, Alessandro
    [J]. WORLD JOURNAL OF GASTROENTEROLOGY, 2022, 28 (11) : 1113 - 1122