Pollution characteristics, source apportionment, and health risk assessment of PM10 and PM2.5 in rooftop and kerbside environment of Lanzhou, NW China

被引:0
|
作者
Gu C.-M. [1 ]
Wang B. [1 ]
Chen Q. [1 ]
Sun X.-H. [1 ]
Zhang M. [1 ]
机构
[1] College of Geography and Environmental Sciences, Zhejiang Normal University, 688#, Yingbin Road, Zhejiang Province, Jinhua
关键词
Chemical characterization; Chemical mass closure; Health risk assessment; Lanzhou; Particulate matter;
D O I
10.1007/s11356-024-33649-4
中图分类号
学科分类号
摘要
To investigate air pollution in the kerbside environment and its associated human health risks, a study was conducted in Lanzhou during December 2018, as well as in April, June, and September 2019. The research aimed to characterize the composition of PM10 and PM2.5, including elements, ions, and carbonaceous components, at both rooftop and kerbside locations. Additionally, source apportionment and health risk assessment were conducted. The results showed that the average mass concentrations of PM10 on the rooftop were 176.01 ± 83.23 μg/m3, and for PM2.5, it was 94.07 ± 64.89 μg/m3. The PM10 and PM2.5 levels at the kerbside are 2.21 times and 1.79 times, respectively, greater than those on the rooftop. Moreover, the concentrations of elements, ions, and carbonaceous components in kerbside PM were higher than those at the rooftop location. Chemical mass closure analysis identified various sources, including organic matter, mineral dust, secondary ions, other ions, elements, and other components. In comparison to rooftop particulate matter (PM), mineral dust makes a more substantial contribution to kerbside PM. Secondary ions show an opposite trend, making a greater contribution to rooftop PM. The contribution of organic components within PM of the same particle size remains relatively consistent. The outcome of the health risk assessment indicates that Co, Cd, and As in PM within the kerbside and rooftop environments do not pose a notable carcinogenic risk. However, Al and Mn do present specific non-carcinogenic risks, particularly in the kerbside environment. Furthermore, children experience elevated non-carcinogenic risk compared to adults. These findings can serve as a scientific foundation for formulating policies within the local health department. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
引用
收藏
页码:39259 / 39270
页数:11
相关论文
共 50 条
  • [1] Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou,China
    Xionghui Qiu
    Lei Duan
    Jian Gao
    Shulan Wang
    Fahe Chai
    Jun Hu
    Jingqiao Zhang
    Yaru Yun
    Journal of Environmental Sciences, 2016, (02) : 75 - 83
  • [2] Chemical characteristics and source apportionment of PM2.5 in Lanzhou, China
    Tan, Jihua
    Zhang, Leiming
    Zhou, Xueming
    Duan, Jingchun
    Li, Yan
    Hu, Jingnan
    He, Kebin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 601 : 1743 - 1752
  • [3] Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou, China
    Qiu, Xionghui
    Duan, Lei
    Gao, Jian
    Wang, Shulan
    Chai, Fahe
    Hu, Jun
    Zhang, Jingqiao
    Yun, Yaru
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2016, 40 : 75 - 83
  • [4] Source apportionment of ambient PM10 and PM2.5 in Haikou, China
    Fang, Xiaozhen
    Bi, Xiaohui
    Xu, Hong
    Wu, Jianhui
    Zhang, Yufen
    Feng, Yinchang
    ATMOSPHERIC RESEARCH, 2017, 190 : 1 - 9
  • [5] Source apportionment of ambient PM10 and PM2.5 in Haikou, China
    Fang X.
    Bi X.
    Xu H.
    Wu J.
    Zhang Y.
    Feng Y.
    Atmospheric Research, 2017, 190 : 1 - 9
  • [6] Characteristics of mass concentration, chemical composition, source apportionment of PM2.5 and PM10 and health risk assessment in the emerging megacity in China
    Jiang, Nan
    Yin, Shasha
    Guo, Yue
    Li, Jingyi
    Kang, Panru
    Zhang, Ruiqin
    Tang, Xiaoyan
    ATMOSPHERIC POLLUTION RESEARCH, 2018, 9 (02) : 309 - 321
  • [7] Source apportionment of indoor PM2.5 and PM10 in homes
    Chao, CY
    Cheng, EC
    INDOOR AND BUILT ENVIRONMENT, 2002, 11 (01) : 27 - 37
  • [8] Distribution Characteristics and Source Apportionment of Elements Bonded with PM2.5 and PM10 in Linyi
    Lu P.
    Zhao X.-Y.
    Yin B.-H.
    Zhang N.
    Wang X.-H.
    Yu H.
    Yang W.
    Wang X.-L.
    Huanjing Kexue/Environmental Science, 2020, 41 (05): : 2036 - 2043
  • [9] Source apportionment of PM10 and PM2.5 air pollution, and possible impacts of study characteristics in South Korea
    Ryou, Hyoung Gon
    Heo, Jongbae
    Kim, Sun-Young
    ENVIRONMENTAL POLLUTION, 2018, 240 : 963 - 972
  • [10] Source apportionment for urban PM10 and PM2.5 in the Beijing area
    ZHANG Wei1
    2 Center for Atmospheric Environmental Study
    ChineseScienceBulletin, 2007, (05) : 608 - 615