MKD-Cooper: Cooperative 3D Object Detection for Autonomous Driving via Multi-Teacher Knowledge Distillation

被引:1
|
作者
Li, Zhiyuan [1 ,2 ]
Liang, Huawei [1 ,2 ,3 ,4 ]
Wang, Hanqi [1 ]
Zhao, Mingzhuo [5 ]
Wang, Jian [1 ,2 ]
Zheng, Xiaokun [1 ,2 ]
机构
[1] Chinese Acad Sci, Hefei Inst Phys Sci, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Peoples R China
[3] Anhui Engn Lab Intelligent Driving Technol & Appl, Hefei 230031, Peoples R China
[4] Chinese Acad Sci, Innovat Res Inst Robot & Intelligent Mfg, Hefei 230031, Peoples R China
[5] Southeast Univ, Sch Cyber Sci & Engn, Nanjing 211189, Peoples R China
来源
关键词
Three-dimensional displays; Object detection; Feature extraction; Solid modeling; Adaptation models; Point cloud compression; Aggregates; Cooperative perception; 3D object detection; autonomous driving; knowledge distillation; multiple teachers; MULTIOBJECT TRACKING;
D O I
10.1109/TIV.2023.3310580
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurately detecting objects in 3D point clouds is critical for achieving precise scene understanding in autonomous driving systems. Cooperative perception, through information exchange among neighboring vehicles, can significantly improve object detection performance even under occlusion. This article proposes a novel cooperative perception framework based on multi-teacher knowledge distillation for 3D object detection, namely MKD-Cooper. First, we design a Collaborative Attention Fusion (CAF) module that dynamically captures inter-vehicle interactions through channel and spatial attention. By incorporating the CAF module into the CAF network, we effectively aggregate shared deep learning-based features from neighboring vehicles, resulting in a fused feature map that contains rich contextual information. Second, we propose an adaptive multi-teacher knowledge distillation method that adaptively assigns weights to different teacher models based on their current performance, effectively transferring valuable knowledge from multiple excellent teacher models to the student model. Experimental results on the OPV2V and V2XSim 2.0 datasets demonstrate that our method achieves state-of-the-art performance in detection accuracy while exhibiting excellent comprehensive performance between detection accuracy and efficiency. Moreover, field experiments in real urban environments further validate the effectiveness of our approach.
引用
收藏
页码:1490 / 1500
页数:11
相关论文
共 50 条
  • [1] DE-MKD: Decoupled Multi-Teacher Knowledge Distillation Based on Entropy
    Cheng, Xin
    Zhang, Zhiqiang
    Weng, Wei
    Yu, Wenxin
    Zhou, Jinjia
    [J]. MATHEMATICS, 2024, 12 (11)
  • [2] Knowledge Distillation via Multi-Teacher Feature Ensemble
    Ye, Xin
    Jiang, Rongxin
    Tian, Xiang
    Zhang, Rui
    Chen, Yaowu
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 566 - 570
  • [3] Knowledge Distillation via Multi-Teacher Feature Ensemble
    Ye, Xin
    Jiang, Rongxin
    Tian, Xiang
    Zhang, Rui
    Chen, Yaowu
    [J]. IEEE Signal Processing Letters, 2024, 31 : 566 - 570
  • [4] Anomaly detection based on multi-teacher knowledge distillation
    Ma, Ye
    Jiang, Xu
    Guan, Nan
    Yi, Wang
    [J]. JOURNAL OF SYSTEMS ARCHITECTURE, 2023, 138
  • [5] Learning Lightweight Object Detectors via Multi-Teacher Progressive Distillation
    Cao, Shengcao
    Li, Mengtian
    Hays, James
    Ramanan, Deva
    Wang, Yu-Xiong
    Gui, Liang-Yan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 202, 2023, 202
  • [6] Multimodal Cooperative 3D Object Detection Over Connected Vehicles for Autonomous Driving
    Chi, Fangyuan
    Wang, Yixiao
    Pourazad, Mahsa T.
    Nasiopoulos, Panos
    Leung, Victor C. M.
    [J]. IEEE NETWORK, 2023, 37 (04): : 265 - 272
  • [7] Adaptive Feature Fusion Based Cooperative 3D Object Detection for Autonomous Driving
    Wang, Junyong
    Zeng, Yuan
    Gong, Yi
    [J]. 2022 3RD INFORMATION COMMUNICATION TECHNOLOGIES CONFERENCE (ICTC 2022), 2022, : 103 - 107
  • [8] Monocular 3D Object Detection for Autonomous Driving
    Chen, Xiaozhi
    Kundu, Kaustav
    Zhang, Ziyu
    Ma, Huimin
    Fidler, Sanja
    Urtasun, Raquel
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 2147 - 2156
  • [9] 3D Object Detection for Autonomous Driving: A Survey
    Qian, Rui
    Lai, Xin
    Li, Xirong
    [J]. PATTERN RECOGNITION, 2022, 130
  • [10] Multi-modality 3D object detection in autonomous driving: A review
    Tang, Yingjuan
    He, Hongwen
    Wang, Yong
    Mao, Zan
    Wang, Haoyu
    [J]. NEUROCOMPUTING, 2023, 553