Hybrid machine learning application with integration of meta-heuristic algorithm for prediction of cooling load

被引:0
|
作者
Ming, Pingxiang [1 ]
机构
[1] Wuhan City Polytech, Sch Automot Technol & Serv, Wuhan 430000, Hubei, Peoples R China
关键词
Cooling load; Heating energy consumption; Support Vector Regression; Fire Hawk Optimizer; Leader Harris Hawks optimization; ARTIFICIAL-INTELLIGENCE; DEMAND;
D O I
10.1007/s41939-024-00463-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cooling Load, the energy needed for temperature control in a space, is vital for energy conservation, efficient management, and planning. Accurate energy consumption predictions are crucial for resource optimization and sustainability. Improving predictive models is essential for energy system efficacy as technology advances. This research introduces hybrid machine learning models integrated with advanced optimization techniques designed to estimate Cooling Load in buildings precisely. By merging ML and optimization, it aims to innovate in predicting and managing cooling energy needs, contributing to overall sustainability in the built environment. The research utilizes the Support Vector Regression model combined with the Fire Hawk Optimizer and the Leader Harris Hawks optimization method to achieve this goal. A thorough set of experiments is carried out, covering various architectural variables like orientation, glazing area, relative compactness, building height, surface area, roof area, and wall area. A comparative assessment is then performed to assess how well the suggested models can predict outcomes. As indicated by the results, the SVR+LHHO model, which fuses the Support Vector Regression model with the Leader Harris Hawks optimization, achieved the highest correlation coefficient at an impressive 99.4%. Furthermore, it showcased the smallest statistical Root Mean Square Error value, recording a minimal 0.745. These findings provide strong evidence of the outstanding predictive capabilities as well as the effectiveness of the SVR+LHHO model in predicting Cooling Load.
引用
下载
收藏
页码:4133 / 4149
页数:17
相关论文
共 50 条
  • [2] Harnessing Machine Learning and Meta-Heuristic Algorithms for Accurate Cooling Load Prediction
    Zhang, Yanfang
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (06) : 1172 - 1182
  • [3] Energy efficiency in cooling systems: integrating machine learning and meta-heuristic algorithms for precise cooling load prediction
    Xu, Kunming
    CHEMICAL PRODUCT AND PROCESS MODELING, 2024, 19 (04): : 573 - 603
  • [4] Enhancing Building Energy Efficiency: A Hybrid Meta-Heuristic Approach for Cooling Load Prediction
    Wang, Chenguang
    Zhou, Yanjie
    Deng, Libin
    Xiong, Ping
    Zhang, Jiarui
    Deng, Jiamin
    Lei, Zili
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (04) : 110 - 121
  • [5] Enhancing Energy Efficiency In Cooling Systems Through Advanced Machine Learning And Meta-Heuristic Algorithms For Precise Cooling Load Prediction
    Li, Fan
    Li, Lu
    You, Fucai
    Journal of Applied Science and Engineering, 2025, 28 (06): : 1275 - 1286
  • [6] Hybrid extreme learning machine with meta-heuristic algorithms for monthly pan evaporation prediction
    Wu, Lifeng
    Huang, Guomin
    Fan, Junliang
    Ma, Xin
    Zhou, Hanmi
    Zeng, Wenzhi
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 168
  • [7] A hybrid meta-heuristic algorithm for VM scheduling with load balancing in cloud computing
    Cho, Keng-Mao
    Tsai, Pang-Wei
    Tsai, Chun-Wei
    Yang, Chu-Sing
    NEURAL COMPUTING & APPLICATIONS, 2015, 26 (06): : 1297 - 1309
  • [8] A hybrid meta-heuristic algorithm for VM scheduling with load balancing in cloud computing
    Keng-Mao Cho
    Pang-Wei Tsai
    Chun-Wei Tsai
    Chu-Sing Yang
    Neural Computing and Applications, 2015, 26 : 1297 - 1309
  • [9] Hybrid meta-heuristic and machine learning algorithms for tunneling-induced settlement prediction: A comparative study
    Zhang, Pin
    Wu, Huai-Na
    Chen, Ren-Peng
    Chan, Tommy H. T.
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2020, 99
  • [10] A Novel Prediction Model for Compiler Optimization with Hybrid Meta-Heuristic Optimization Algorithm
    Kadam, Sandeep U.
    Shinde, Sagar B.
    Gurav, Yogesh B.
    Dambhare, Sunil B.
    Shewale, Chaitali R.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (10) : 583 - 588