A fully scalable homogenization method to upscale 3-D elastic media

被引:0
|
作者
Cao, J. [1 ,5 ]
Brossier, R. [1 ]
Capdeville, Y. [2 ]
Metivier, L. [1 ,3 ]
Sambolian, S. [1 ,4 ]
机构
[1] Univ Grenoble Alpes, ISTerre, F-38000 Grenoble, France
[2] Nantes Univ, Le Mans Univ, Univ Angers, Lab Planetol & Geosci,CNRS,LPG UMR 6112, F-44000 Nantes, France
[3] Univ Grenoble Alpes, LJK, CNRS, F-38000 Grenoble, France
[4] Univ Strasbourg, Inst Terre & Environm Strasbourg, CNRS, UMR 7063, F-67084 Strasbourg, France
[5] CCG, F-91300 Massy, France
关键词
Finite element method; Numerical modelling; Numerical solutions; Computational seismology; Seismic anisotropy; Wave propagation; SPECTRAL-ELEMENT METHOD; WAVE-FORM INVERSION; NONPERIODIC HOMOGENIZATION; ANISOTROPY; TENSOR;
D O I
10.1093/gji/ggae132
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Modelling seismic wavefields in complex 3-D elastic media is the key in many fields of Earth Science: seismology, seismic imaging, seismic hazard assessment and earthquake source mechanism reconstruction. This modelling operation can incur significant computational cost, and its accuracy depends on the ability to take into account the scales of the subsurface heterogeneities varying. The theory of homogenization describes how the small-scale heterogeneities interact with the seismic waves and allows to upscale elastic media consistently with the wave equation. In this study, an efficient and scalable numerical homogenization tool is developed, relying on the similarity between the equations describing the propagation of elastic waves and the homogenization process. By exploiting the optimized implementation of an elastic modelling kernel based on a spectral-element discretization and domain decomposition, a fully scalable homogenization process, working directly on the spectral-element mesh, is presented. Numerical experiments on the entire SEAM II foothill model and a 3-D version of the Marmousi II model illustrate the efficiency and flexibility of this approach. A reduction of two orders of magnitude in terms of absolute computational cost is observed on the elastic wave modelling of the entire SEAM II model at a controlled accuracy.
引用
收藏
页码:72 / 90
页数:19
相关论文
共 50 条
  • [1] 3-D NMM Method for Fully Anisotropic and Nonreciprocal Media
    Liu, Jie
    Tong, Chi Feng
    Jiang, Wei
    Liu, Qing Huo
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2022, 70 (07) : 3428 - 3441
  • [2] Non-periodic homogenization of 3-D elastic media for the seismic wave equation
    Cupillard, Paul
    Capdeville, Yann
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2018, 213 (02) : 983 - 1001
  • [3] A METHOD OF HOMOGENIZATION OF ELASTIC MEDIA
    ORTIZ, M
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1987, 25 (07) : 923 - 934
  • [4] 2-D non-periodic homogenization to upscale elastic media for P-SV waves
    Capdeville, Yann
    Guillot, Laurent
    Marigo, Jean-Jacques
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2010, 182 (02) : 903 - 922
  • [5] Thermo-elastic Homogenization of 3-D Steel Microstructure Simulated by the Phase-field Method
    Laschet, G.
    Apel, M.
    STEEL RESEARCH INTERNATIONAL, 2010, 81 (08) : 637 - 643
  • [6] The Solvability of the 3-D Elastic Wave Equations in Inhomogeneous Media
    Darwito, Purwadi A.
    Nugroho, Gunawan
    Raditya, Murry
    Tavio
    JURNAL KEJURUTERAAN, 2022, 34 (06): : 1063 - 1075
  • [7] ELASTIC 3-D FORWARD MODELING BY THE FOURIER METHOD
    EDWARDS, M
    HSIUNG, C
    KOSLOFF, D
    RESHEF, M
    GEOPHYSICS, 1986, 51 (02) : 494 - 495
  • [8] A DUAL METHOD IN HOMOGENIZATION - APPLICATION TO ELASTIC PERIODIC MEDIA
    SUQUET, PM
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 291 (02): : 181 - 184
  • [9] An efficient homogenization method for elastic media with multiple cracks
    Markov, A.
    Kanaun, S.
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2014, 82 : 205 - 221
  • [10] GENERALIZED BORN SCATTERING OF ELASTIC-WAVES IN 3-D MEDIA
    COATES, RT
    CHAPMAN, CH
    GEOPHYSICAL JOURNAL INTERNATIONAL, 1991, 107 (02) : 231 - 263