A wearable sensor and machine learning estimate step length in older adults and patients with neurological disorders

被引:3
|
作者
Zadka, Assaf [1 ,2 ]
Rabin, Neta [1 ,3 ]
Gazit, Eran [1 ]
Mirelman, Anat [1 ,4 ]
Nieuwboer, Alice [5 ]
Rochester, Lynn [6 ,7 ]
Del Din, Silvia [6 ,7 ]
Pelosin, Elisa [8 ,9 ]
Avanzino, Laura [9 ,10 ]
Bloem, Bastiaan R. [11 ]
Della Croce, Ugo [12 ]
Cereatti, Andrea [13 ]
Hausdorff, Jeffrey M. [1 ,4 ,14 ,15 ,16 ]
机构
[1] Tel Aviv Med Ctr & Sch Med, Neurol Inst, Ctr Study Movement Cognit & Mobil, Tel Aviv, Israel
[2] Tel Aviv Univ, Fac Engn, Dept Biomed Engn, Tel Aviv, Israel
[3] Tel Aviv Univ, Fac Engn, Dept Ind Engn, Tel Aviv, Israel
[4] Tel Aviv Univ, Fac Med & Hlth Sci, Tel Aviv, Israel
[5] Katholieke Univ Leuven, Dept Rehabil Sci, Neuromotor Rehabil Res Grp, Leuven, Belgium
[6] Newcastle Univ, Translat & Clin Res Inst, Fac Med Sci, Newcastle upon Tyne NE1 7RU, England
[7] Newcastle Univ, Natl Inst Hlth & Care Res NIHR, Newcastle Biomed Res Ctr BRC, Newcastle Upon Tyne, England
[8] Univ Genoa, Dept Neurosci Rehabil Ophthalmol Genet & Maternal, Genoa, Italy
[9] IRCCS Policlin San Martino Teaching Hosp, Genoa, Italy
[10] Univ Genoa, Dept Expt Med, Sect Human Physiol, Genoa, Italy
[11] Radboud Univ Nijmegen, Med Ctr, Donders Inst Brain Cognit & Behav, Dept Neurol, Nijmegen, Netherlands
[12] Univ Sassari, Dept Biomed Sci, Sassari, Italy
[13] Politecn Torino, Dept Elect & Telecommun, Turin, Italy
[14] Tel Aviv Univ, Fac Med, Dept Phys Therapy, Tel Aviv, Israel
[15] Rush Alzheimers Dis Ctr, Dept Orthoped Surg, Chicago, IL 60612 USA
[16] Rush Univ, Med Ctr, Chicago, IL 60612 USA
来源
NPJ DIGITAL MEDICINE | 2024年 / 7卷 / 01期
基金
英国惠康基金; 欧盟地平线“2020”; 以色列科学基金会; 英国科研创新办公室;
关键词
SPATIOTEMPORAL GAIT PARAMETERS; RELIABILITY; DISEASE; SPEED; RISK;
D O I
10.1038/s41746-024-01136-2
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Step length is an important diagnostic and prognostic measure of health and disease. Wearable devices can estimate step length continuously (e.g., in clinic or real-world settings), however, the accuracy of current estimation methods is not yet optimal. We developed machine-learning models to estimate step length based on data derived from a single lower-back inertial measurement unit worn by 472 young and older adults with different neurological conditions, including Parkinson's disease and healthy controls. Studying more than 80,000 steps, the best model showed high accuracy for a single step (root mean square error, RMSE = 6.08 cm, ICC(2,1) = 0.89) and higher accuracy when averaged over ten consecutive steps (RMSE = 4.79 cm, ICC(2,1) = 0.93), successfully reaching the predefined goal of an RMSE below 5 cm (often considered the minimal-clinically-important-difference). Combining machine-learning with a single, wearable sensor generates accurate step length measures, even in patients with neurologic disease. Additional research may be needed to further reduce the errors in certain conditions.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] The diagnosis of neurological disorders in older adults
    Garb, HN
    Boyle, PA
    ASSESSMENT, 2003, 10 (02) : 129 - 134
  • [2] Wearable wireless sensor network to assess clinical status in patients with neurological disorders
    Lorincz, Konrad
    Kuris, Benjamin
    Ayer, Steven M.
    Patel, Shyamal
    Bonato, Paolo
    Welsh, Matt
    PROCEEDINGS OF THE SIXTH INTERNATIONAL SYMPOSIUM ON INFORMATION PROCESSING IN SENSOR NETWORKS, 2007, : 563 - 564
  • [3] Machine learning ensemble for neurological disorders
    Kaur, Harkawalpreet
    Malhi, Avleen Kaur
    Pannu, Husanbir Singh
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (16): : 12697 - 12714
  • [4] Multiple-Wearable-Sensor-Based Gait Classification and Analysis in Patients with Neurological Disorders
    Hsu, Wei-Chun
    Sugiarto, Tommy
    Lin, Yi-Jia
    Yang, Fu-Chi
    Lin, Zheng-Yi
    Sun, Chi-Tien
    Hsu, Chun-Lung
    Chou, Kuan-Nien
    SENSORS, 2018, 18 (10)
  • [5] MAXIMUM STEP LENGTH TESTING IN OLDER ADULTS
    Schepens, S.
    Carlesimo, R.
    Wallace, M.
    Goldberg, A.
    GERONTOLOGIST, 2009, 49 : 285 - 286
  • [6] Wearable sensor and machine learning estimate tendon load and walking speed during immobilizing boot ambulation
    Kwon, Michelle P.
    Hullfish, Todd J.
    Humbyrd, Casey Jo
    Boakye, Lorraine A. T.
    Baxter, Josh R.
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [7] Wearable sensor and machine learning estimate tendon load and walking speed during immobilizing boot ambulation
    Michelle P. Kwon
    Todd J. Hullfish
    Casey Jo Humbyrd
    Lorraine A. T. Boakye
    Josh R. Baxter
    Scientific Reports, 13 (1)
  • [8] Machine learning insights on activities of daily living disorders in Chinese older adults
    Zhang, Huanting
    Zhou, Wenhao
    He, Jianan
    Liu, Xingyou
    Shen, Jie
    EXPERIMENTAL GERONTOLOGY, 2024, 198
  • [9] Combining wearable sensor signals, machine learning and biomechanics to estimate tibial bone force and damage during running
    Matijevich, Emily S.
    Scott, Leon R.
    Volgyesi, Peter
    Derry, Kendall H.
    Zelik, Karl E.
    HUMAN MOVEMENT SCIENCE, 2020, 74
  • [10] DRIVING IN OLDER ADULTS WITH NEUROLOGICAL AND NEURODEGENERATIVE DISORDERS: A GROWING CONCERN
    不详
    GERONTOLOGIST, 2012, 52 : 266 - 266