Emergent cooperation from mutual acknowledgment exchange in multi-agent reinforcement learning

被引:1
|
作者
Phan, Thomy [1 ,2 ]
Sommer, Felix [2 ]
Ritz, Fabian [2 ]
Altmann, Philipp [2 ]
Nuesslein, Jonas [2 ]
Koelle, Michael [2 ]
Belzner, Lenz [3 ]
Linnhoff-Popien, Claudia [2 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90007 USA
[2] Ludwig Maximilians Univ Munchen, Munich, Germany
[3] TH Ingolstadt, Ingolstadt, Germany
关键词
Multi-agent learning; Reinforcement learning; Mutual acknowledgments; Peer incentivization; Emergent cooperation; EVOLUTION; LEVEL;
D O I
10.1007/s10458-024-09666-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Peer incentivization (PI) is a recent approach where all agents learn to reward or penalize each other in a distributed fashion, which often leads to emergent cooperation. Current PI mechanisms implicitly assume a flawless communication channel in order to exchange rewards. These rewards are directly incorporated into the learning process without any chance to respond with feedback. Furthermore, most PI approaches rely on global information, which limits scalability and applicability to real-world scenarios where only local information is accessible. In this paper, we propose Mutual Acknowledgment Token Exchange (MATE), a PI approach defined by a two-phase communication protocol to exchange acknowledgment tokens as incentives to shape individual rewards mutually. All agents condition their token transmissions on the locally estimated quality of their own situations based on environmental rewards and received tokens. MATE is completely decentralized and only requires local communication and information. We evaluate MATE in three social dilemma domains. Our results show that MATE is able to achieve and maintain significantly higher levels of cooperation than previous PI approaches. In addition, we evaluate the robustness of MATE in more realistic scenarios, where agents can deviate from the protocol and communication failures can occur. We also evaluate the sensitivity of MATE w.r.t. the choice of token values.
引用
收藏
页数:36
相关论文
共 50 条
  • [1] Multi-Agent Cognition Difference Reinforcement Learning for Multi-Agent Cooperation
    Wang, Huimu
    Qiu, Tenghai
    Liu, Zhen
    Pu, Zhiqiang
    Yi, Jianqiang
    Yuan, Wanmai
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [2] Biases for Emergent Communication in Multi-agent Reinforcement Learning
    Eccles, Tom
    Bachrach, Yoram
    Lever, Guy
    Lazaridou, Angeliki
    Graepel, Thore
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [3] Multi-Agent Deep Reinforcement Learning with Emergent Communication
    Simoes, David
    Lau, Nuno
    Reis, Luis Paulo
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [4] Emergent Social Learning via Multi-agent Reinforcement Learning
    Ndousse, Kamal
    Eck, Douglas
    Levine, Sergey
    Jaques, Natasha
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [5] A cooperation model using reinforcement learning for multi-agent
    Lee, M
    Lee, J
    Jeong, HJ
    Lee, Y
    Choi, S
    Gatton, TM
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2006, PT 5, 2006, 3984 : 675 - 681
  • [6] Measuring Collaborative Emergent Behavior in Multi-agent Reinforcement Learning
    Barton, Sean L.
    Waytowich, Nicholas R.
    Zaroukian, Erin
    Asher, Derrik E.
    HUMAN SYSTEMS ENGINEERING AND DESIGN, IHSED2018, 2019, 876 : 422 - 427
  • [7] Quantum Multi-Agent Reinforcement Learning for Autonomous Mobility Cooperation
    Park, Soohyun
    Kim, Jae Pyoung
    Park, Chanyoung
    Jung, Soyi
    Kim, Joongheon
    IEEE COMMUNICATIONS MAGAZINE, 2024, 62 (06) : 106 - 112
  • [8] A Soft Graph Attention Reinforcement Learning for Multi-Agent Cooperation
    Wang, Huimu
    Pu, Zhiqiang
    Liu, Zhen
    Yi, Jianqiang
    Qiu, Tenghai
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2020, : 1257 - 1262
  • [9] Research on cooperation and reinforcement learning algorithm in multi-agent systems
    Zheng, Shuli
    Han, Jianghong
    Luo, Xiangfeng
    Jiang, Jianwen
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2002, 15 (04): : 453 - 457
  • [10] Emergent Communication in Multi-Agent Reinforcement Learning for Future Wireless Networks
    Chafii M.
    Naoumi S.
    Alami R.
    Almazrouei E.
    Bennis M.
    Debbah M.
    IEEE Internet of Things Magazine, 2023, 6 (04): : 18 - 24